adam_op.cc 5.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/adam_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dzhwinter 已提交
20
using Tensor = framework::Tensor;
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
class AdamOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Param"),
                   "Input(Param) of AdamOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
                   "Input(Grad) of AdamOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Moment1"),
                   "Input(Moment1) of AdamOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Moment2"),
                   "Input(Moment2) of AdamOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
                   "Input(LearningRate) of AdamOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Beta1Pow"),
                   "Input(Beta1Pow) of AdamOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Beta2Pow"),
                   "Input(Beta2Pow) of AdamOp should not be null.");

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(ParamOut) of AdamOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Moment1Out"),
                   "Output(Moment1Out) of AdamOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Moment2Out"),
                   "Output(Moment2Out) of AdamOp should not be null.");

    auto lr_dims = ctx->GetInputDim("LearningRate");
    PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
                      "Learning rate should have 1 dimension");
    auto beta1_pow_dims = ctx->GetInputDim("Beta1Pow");
    PADDLE_ENFORCE_EQ(framework::product(beta1_pow_dims), 1,
                      "Beta1 power accumulator should have 1 dimension");
    auto beta2_pow_dims = ctx->GetInputDim("Beta2Pow");
55 56
    PADDLE_ENFORCE_EQ(framework::product(beta2_pow_dims), 1,
                      "Beta2 power accumulator should have 1 dimension");
57 58

    auto param_dims = ctx->GetInputDim("Param");
Q
qiaolongfei 已提交
59 60 61 62 63 64
    if (ctx->GetInputsVarType("Grad")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      PADDLE_ENFORCE_EQ(
          param_dims, ctx->GetInputDim("Grad"),
          "Param and Grad input of AdamOp should have same dimension");
    }
65 66
    PADDLE_ENFORCE_EQ(
        param_dims, ctx->GetInputDim("Moment1"),
67
        "Param and Moment1 input of AdamOp should have same dimension");
68 69
    PADDLE_ENFORCE_EQ(
        param_dims, ctx->GetInputDim("Moment2"),
70
        "Param and Moment2 input of AdamOp should have same dimension");
71 72 73 74 75

    ctx->SetOutputDim("ParamOut", param_dims);
    ctx->SetOutputDim("Moment1Out", param_dims);
    ctx->SetOutputDim("Moment2Out", param_dims);
  }
D
dzhwinter 已提交
76 77
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
78
    auto input_data_type = ctx.Input<Tensor>("Param")->type();
D
dzhwinter 已提交
79 80
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
81 82 83 84
};

class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
85
  void Make() override {
86 87 88 89 90 91 92 93
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
    AddInput("LearningRate", "(Tensor) Learning rate");
    AddInput("Moment1", "(Tensor) Input first moment");
    AddInput("Moment2", "(Tensor) Input second moment");
    AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator");
    AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator");

94 95 96
    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("Moment1Out", "(Tensor) Output first moment");
    AddOutput("Moment2Out", "(Tensor) Output second moment");
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

    AddAttr<float>("beta1",
                   "(float, default 0.9) "
                   "Exponential decay rate for the "
                   "first moment estimates.")
        .SetDefault(0.9f);
    AddAttr<float>("beta2",
                   "(float, default 0.999) "
                   "exponential decay rate for the "
                   "second moment estimates.")
        .SetDefault(0.999f);
    AddAttr<float>("epsilon",
                   "(float, default 1.0e-8) "
                   "Constant for numerical stability")
        .SetDefault(1.0e-8f);
Q
Qiao Longfei 已提交
112
    AddAttr<bool>(
Q
Qiao Longfei 已提交
113
        "lazy_mode",
Q
Qiao Longfei 已提交
114 115 116
        "(bool, default false) "
        "only update the parameter that has gradient in sparse update")
        .SetDefault(false);
117 118

    AddComment(R"DOC(
119
Adam Optimizer.
120 121

This implements the Adam optimizer from Section 2 of the Adam
122 123 124
paper : https://arxiv.org/abs/1412.6980.
Adam is a first-order gradient-based optimization method based on
adaptive estimates of lower-order moments.
125 126 127

Adam updates:

128 129 130 131 132 133 134
$$
moment\_1\_out = \beta_1 * moment\_1 + (1 - \beta_1) * grad \\
moment\_2_\out = \beta_2 * moment\_2 + (1 - \beta_2) * grad * grad \\
learning\_rate = learning\_rate *
                  \frac{\sqrt{1 - \beta_{2\_pow}}}{1 - \beta_{1\_pow}} \\
param\_out = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
$$
135 136 137 138 139 140 141 142 143

)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adam, ops::AdamOp, ops::AdamOpMaker);
Q
QI JUN 已提交
144 145 146
REGISTER_OP_CPU_KERNEL(
    adam, ops::AdamOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AdamOpKernel<paddle::platform::CPUDeviceContext, double>);