eigen.h 2.8 KB
Newer Older
Y
Yi Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Yi Wang 已提交
17
#include "paddle/framework/tensor.h"
Y
Yi Wang 已提交
18 19 20 21 22 23 24 25
#include "unsupported/Eigen/CXX11/Tensor"

namespace paddle {
namespace framework {

// EigenDim converts paddle::platform::DDim into Eigen::DSizes.
template <int D>
struct EigenDim {
Q
qijun 已提交
26
  using Type = Eigen::DSizes<Eigen::DenseIndex, D>;
Y
Yi Wang 已提交
27 28 29 30

  static Type From(const DDim& dims) {
    PADDLE_ENFORCE(arity(dims) == D, "D must match arity(DDim)");
    Type ret;
Y
Yi Wang 已提交
31
    for (int d = 0; d < arity(dims); d++) {
Y
Yi Wang 已提交
32 33 34 35 36 37 38
      ret[d] = dims[d];
    }
    return ret;
  }
};

// Interpret paddle::platform::Tensor as EigenTensor and EigenConstTensor.
39 40
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
Y
Yi Wang 已提交
41
struct EigenTensor {
42 43 44
  // TODO(qijun) Now, default type in unaligned, and we will make a benchmark on
  // the speed of aligned and unaligned version in future.
  using Type = Eigen::TensorMap<Eigen::Tensor<T, D, MajorType, IndexType>>;
Y
Yi Wang 已提交
45 46

  using ConstType =
47
      Eigen::TensorMap<Eigen::Tensor<const T, D, MajorType, IndexType>>;
Y
Yi Wang 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

  static Type From(Tensor& tensor, DDim dims) {
    return Type(tensor.data<T>(), EigenDim<D>::From(dims));
  }

  static Type From(Tensor& tensor) { return From(tensor, tensor.dims_); }

  static ConstType From(const Tensor& tensor, DDim dims) {
    return ConstType(tensor.data<T>(), EigenDim<D>::From(dims));
  }

  static ConstType From(const Tensor& tensor) {
    return From(tensor, tensor.dims_);
  }
};

64 65 66 67
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
struct EigenMatrix : public EigenTensor<T, 2, MajorType, IndexType> {};

68 69 70
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
struct EigenVector : public EigenTensor<T, 1, MajorType, IndexType> {
71 72 73 74
  // Flatten reshapes a Tensor into an EigenVector.
  static typename EigenVector::Type Flatten(Tensor& tensor) {
    return EigenVector::From(
        tensor, make_ddim({static_cast<int>(product(tensor.dims_))}));
Q
qijun 已提交
75 76
  }

77 78 79
  static typename EigenVector::ConstType Flatten(const Tensor& tensor) {
    return EigenVector::From(
        tensor, make_ddim({static_cast<int>(product(tensor.dims_))}));
Q
qijun 已提交
80
  }
Y
Yi Wang 已提交
81 82 83 84
};

}  // namespace framework
}  // namespace paddle