ConvBaseLayer.cpp 4.4 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/utils/Logging.h"
#include "ConvBaseLayer.h"
namespace paddle {

bool ConvBaseLayer::init(const LayerMap& layerMap,
                         const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);
23 24
  isDeconv_ = (config_.type() == "exconv" || config_.type() == "cudnn_conv")
              ? false : true;
25

Z
zhangjinchao01 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38
  /* Initialize the convolutional layer parameter */
  numFilters_ = config_.num_filters();
  sharedBiases_ = config_.shared_biases();
  for (auto& inputConfig : config_.inputs()) {
    const ConvConfig& conf = inputConfig.conv_conf();
    padding_.push_back(conf.padding());
    stride_.push_back(conf.stride());
    filterSize_.push_back(conf.filter_size());
    paddingY_.push_back(conf.padding_y());
    strideY_.push_back(conf.stride_y());
    filterSizeY_.push_back(conf.filter_size_y());
    filterPixels_.push_back(filterSize_.back() * filterSizeY_.back());
    channels_.push_back(conf.channels());
39 40
    imgSizeH_.push_back(conf.img_size());
    imgSizeW_.push_back(conf.img_size());
Z
zhangjinchao01 已提交
41 42
    groups_.push_back(conf.groups());
    filterChannels_.push_back(conf.filter_channels());
43 44
    outputH_.push_back(conf.output_x());
    outputW_.push_back(conf.output_x());
Z
zhangjinchao01 已提交
45 46
  }

47 48 49 50 51 52 53 54 55 56 57 58
  CHECK(inputLayers_.size() == parameters_.size());
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    size_t height, width;
    height = filterPixels_[i] * filterChannels_[i];
    width = (!isDeconv_) ? numFilters_ : channels_[i];

    // create a new weight
    CHECK_EQ(parameters_[i]->getSize(), width * height);
    Weight* w = new Weight(height, width, parameters_[i]);
    weights_.emplace_back(w);
  }

Z
zhangjinchao01 已提交
59
  /* initialize the biases_ */
60
  if (biasParameter_.get()) {
Z
zhangjinchao01 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    if (sharedBiases_) {
      CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
      biases_ =
          std::unique_ptr<Weight>(new Weight(numFilters_, 1, biasParameter_));
    } else {
      biases_ =
          std::unique_ptr<Weight>(new Weight(getSize(), 1, biasParameter_));
    }
  }

  // default caffe model
  caffeMode_ = true;

  return true;
}

77 78 79 80 81 82 83 84 85 86
size_t ConvBaseLayer::calOutputSize() {
  auto clearAndReserve = [this](IntV* vec) {
    vec->clear();
    vec->reserve(this->inputLayers_.size());
  };
  clearAndReserve(&imgSizeH_);
  clearAndReserve(&imgSizeW_);
  clearAndReserve(&outputH_);
  clearAndReserve(&outputW_);
  size_t layerSize = 0;
87

88
  auto setLayerSize = [&](IntV& inH, IntV& inW, IntV& outH, IntV& outW) {
89
    for (size_t i = 0; i < inputLayers_.size(); i++) {
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
       inH.push_back(inputLayers_[i]->getOutput().getFrameHeight());
       inW.push_back(inputLayers_[i]->getOutput().getFrameWidth());
       if (isDeconv_) {
         if (inH[i] == 0)
           inH[i] = config_.inputs(i).conv_conf().output_x();
         if (inW[i] == 0)
           inW[i] = config_.inputs(i).conv_conf().output_x();
         outH.push_back(
             imageSize(inH[i], filterSizeY_[i], paddingY_[i], strideY_[i]));
         outW.push_back(
             imageSize(inW[i], filterSize_[i], padding_[i], stride_[i]));
       } else {
         if (inH[i] == 0)
           inH[i] = config_.inputs(i).conv_conf().img_size();
         if (inW[i] == 0)
           inW[i] = config_.inputs(i).conv_conf().img_size();
         outH.push_back(
             outputSize(inH[i], filterSizeY_[i], paddingY_[i], strideY_[i]));
         outW.push_back(
             outputSize(inW[i], filterSize_[i], padding_[i], stride_[i]));
       }
111 112
       CHECK_EQ(outH[i], outH[0]);
       CHECK_EQ(outW[i], outW[0]);
113
    }
114 115 116 117 118 119 120
    getOutput().setFrameHeight(outH[0]);
    getOutput().setFrameWidth(outW[0]);
    layerSize = outH[0] * outW[0] * size_t(numFilters_);
  };

  if (isDeconv_) {
    setLayerSize(outputH_, outputW_, imgSizeH_, imgSizeW_);
121
  } else {
122
    setLayerSize(imgSizeH_, imgSizeW_, outputH_, outputW_);
123
  }
124

125
  return layerSize;
126 127
}

Z
zhangjinchao01 已提交
128
}  // namespace paddle