object_detector.h 4.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <ctime>
18
#include <memory>
19
#include <numeric>
20 21 22
#include <string>
#include <utility>
#include <vector>
Q
qingqing01 已提交
23 24 25

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
26
#include <opencv2/imgproc/imgproc.hpp>
Q
qingqing01 已提交
27

28
#include "paddle_inference_api.h"  // NOLINT
Q
qingqing01 已提交
29 30

#include "include/config_parser.h"
31
#include "include/picodet_postprocess.h"
32 33
#include "include/preprocess_op.h"
#include "include/utils.h"
Q
qingqing01 已提交
34 35 36 37 38 39 40 41 42

using namespace paddle_infer;

namespace PaddleDetection {

// Generate visualization colormap for each class
std::vector<int> GenerateColorMap(int num_class);

// Visualiztion Detection Result
43 44 45 46 47 48
cv::Mat VisualizeResult(
    const cv::Mat& img,
    const std::vector<PaddleDetection::ObjectResult>& results,
    const std::vector<std::string>& lables,
    const std::vector<int>& colormap,
    const bool is_rbox);
Q
qingqing01 已提交
49 50 51

class ObjectDetector {
 public:
52 53 54 55 56 57 58 59 60 61 62
  explicit ObjectDetector(const std::string& model_dir,
                          const std::string& device = "CPU",
                          bool use_mkldnn = false,
                          int cpu_threads = 1,
                          const std::string& run_mode = "paddle",
                          const int batch_size = 1,
                          const int gpu_id = 0,
                          const int trt_min_shape = 1,
                          const int trt_max_shape = 1280,
                          const int trt_opt_shape = 640,
                          bool trt_calib_mode = false) {
G
Guanghua Yu 已提交
63
    this->device_ = device;
G
Guanghua Yu 已提交
64 65 66 67 68 69 70 71
    this->gpu_id_ = gpu_id;
    this->cpu_math_library_num_threads_ = cpu_threads;
    this->use_mkldnn_ = use_mkldnn;

    this->trt_min_shape_ = trt_min_shape;
    this->trt_max_shape_ = trt_max_shape;
    this->trt_opt_shape_ = trt_opt_shape;
    this->trt_calib_mode_ = trt_calib_mode;
Q
qingqing01 已提交
72
    config_.load_config(model_dir);
73
    this->use_dynamic_shape_ = config_.use_dynamic_shape_;
G
Guanghua Yu 已提交
74
    this->min_subgraph_size_ = config_.min_subgraph_size_;
Q
qingqing01 已提交
75
    threshold_ = config_.draw_threshold_;
76
    preprocessor_.Init(config_.preprocess_info_);
77
    LoadModel(model_dir, batch_size, run_mode);
Q
qingqing01 已提交
78 79 80
  }

  // Load Paddle inference model
81 82 83
  void LoadModel(const std::string& model_dir,
                 const int batch_size = 1,
                 const std::string& run_mode = "paddle");
Q
qingqing01 已提交
84 85

  // Run predictor
C
cnn 已提交
86
  void Predict(const std::vector<cv::Mat> imgs,
87 88 89 90 91 92
               const double threshold = 0.5,
               const int warmup = 0,
               const int repeats = 1,
               std::vector<PaddleDetection::ObjectResult>* result = nullptr,
               std::vector<int>* bbox_num = nullptr,
               std::vector<double>* times = nullptr);
Q
qingqing01 已提交
93 94 95 96 97 98 99

  // Get Model Label list
  const std::vector<std::string>& GetLabelList() const {
    return config_.label_list_;
  }

 private:
G
Guanghua Yu 已提交
100
  std::string device_ = "CPU";
G
Guanghua Yu 已提交
101 102 103 104 105 106 107 108 109
  int gpu_id_ = 0;
  int cpu_math_library_num_threads_ = 1;
  bool use_mkldnn_ = false;
  int min_subgraph_size_ = 3;
  bool use_dynamic_shape_ = false;
  int trt_min_shape_ = 1;
  int trt_max_shape_ = 1280;
  int trt_opt_shape_ = 640;
  bool trt_calib_mode_ = false;
Q
qingqing01 已提交
110 111 112
  // Preprocess image and copy data to input buffer
  void Preprocess(const cv::Mat& image_mat);
  // Postprocess result
113 114 115 116
  void Postprocess(const std::vector<cv::Mat> mats,
                   std::vector<PaddleDetection::ObjectResult>* result,
                   std::vector<int> bbox_num,
                   std::vector<float> output_data_,
W
wangguanzhong 已提交
117
                   std::vector<int> output_mask_data_,
118
                   bool is_rbox);
Q
qingqing01 已提交
119 120 121 122 123 124 125 126 127

  std::shared_ptr<Predictor> predictor_;
  Preprocessor preprocessor_;
  ImageBlob inputs_;
  float threshold_;
  ConfigPaser config_;
};

}  // namespace PaddleDetection