README.md 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
English | [简体中文](README_cn.md)

# PP-YOLOE

## Table of Contents
- [Introduction](#Introduction)
- [Model Zoo](#Model-Zoo)
- [Getting Start](#Getting-Start)
- [Appendix](#Appendix)

## Introduction
12
PP-YOLOE is an excellent single-stage anchor-free model based on PP-YOLOv2, surpassing a variety of popular yolo models. PP-YOLOE has a series of models, named s/m/l/x, which are configured through width multiplier and depth multiplier. PP-YOLOE avoids using special operators, such as deformable convolution or matrix nms, to be deployed friendly on various hardware. For more details, please refer to our [report](https://arxiv.org/abs/2203.16250).
13 14 15 16 17

<div align="center">
  <img src="../../docs/images/ppyoloe_map_fps.png" width=500 />
</div>

18
PP-YOLOE-l achieves 51.6 mAP on COCO test-dev2017 dataset with 78.1 FPS on Tesla V100. While using TensorRT FP16, PP-YOLOE-l can be further accelerated to 149.2 FPS. PP-YOLOE-s/m/x also have excellent accuracy and speed performance, which can be found in [Model Zoo](#Model-Zoo)
19 20 21 22 23 24 25 26

PP-YOLOE is composed of following methods:
- Scalable backbone and neck
- [Task Alignment Learning](https://arxiv.org/abs/2108.07755)
- Efficient Task-aligned head with [DFL](https://arxiv.org/abs/2006.04388) and [VFL](https://arxiv.org/abs/2008.13367)
- [SiLU activation function](https://arxiv.org/abs/1710.05941)

## Model Zoo
27
|          Model           | GPU number | images/GPU |  backbone  | input shape | Box AP<sup>val<br>0.5:0.95 | Box AP<sup>test<br>0.5:0.95 | Params(M) | FLOPs(G) | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | download | config  |
28
|:------------------------:|:-------:|:----------:|:----------:| :-------:| :------------------: | :-------------------: |:---------:|:--------:| :------------: | :---------------------: | :------: | :------: |
29 30 31 32
| PP-YOLOE-s                  |     8      |     32     | cspresnet-s |     640     |       43.0        |        43.2         |   7.93    |  17.36   |      208.3      |          333.3          | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_300e_coco.pdparams) | [config](./ppyoloe_crn_s_300e_coco.yml)                   |
| PP-YOLOE-m                  |     8      |     28     | cspresnet-m |     640     |       49.0        |        49.1         |   23.43   |  49.91   |      123.4      |          208.3          | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_m_300e_coco.pdparams) | [config](./ppyoloe_crn_m_300e_coco.yml)                   |
| PP-YOLOE-l                  |     8      |     20      | cspresnet-l |     640     |       51.4        |        51.6         |   52.20   |  110.07  |      78.1      |          149.2          | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams) | [config](./ppyoloe_crn_l_300e_coco.yml)                   |
| PP-YOLOE-x                  |     8      |     16     | cspresnet-x |     640     |       52.3        |        52.4         |   98.42   |  206.59  |      45.0      |          95.2          | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_x_300e_coco.pdparams) | [config](./ppyoloe_crn_x_300e_coco.yml)                   |
33 34 35 36 37 38 39 40 41

### Comprehensive Metrics
|          Model           | AP<sup>0.5:0.95 | AP<sup>0.5 |  AP<sup>0.75  | AP<sup>small  | AP<sup>medium | AP<sup>large | AR<sup>small | AR<sup>medium | AR<sup>large | download | config  |
|:----------------------:|:---------------:|:----------:|:-------------:| :------------:| :-----------: | :----------: |:------------:|:-------------:|:------------:| :-----: | :-----: |
| PP-YOLOE-s             |      43.0      |     59.6    |     47.2      |     26.0      |      47.4     |     58.7     |     45.1     |      70.6     |   81.4         | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_300e_coco.pdparams) | [config](./ppyoloe_crn_s_300e_coco.yml)|
| PP-YOLOE-m             |      49.0      |     65.9    |     53.8      |     30.9      |      53.5     |     65.3     |     50.9     |      74.4     |   84.7         | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_m_300e_coco.pdparams) | [config](./ppyoloe_crn_m_300e_coco.yml)|
| PP-YOLOE-l             |      51.4      |     68.6    |     56.2      |     34.8      |      56.1     |     68.0     |     53.1     |      76.8     |   85.6         | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams) | [config](./ppyoloe_crn_l_300e_coco.yml)|
| PP-YOLOE-x             |      52.3      |     69.5    |     56.8      |     35.1      |      57.0     |     68.6     |     55.5     |      76.9     |   85.7         | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_x_300e_coco.pdparams) | [config](./ppyoloe_crn_x_300e_coco.yml)|

42 43 44

**Notes:**

45
- PP-YOLOE is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset,all the model weights are trained for **300 epoches**.
46
- The model weights in the table of Comprehensive Metrics are **the same as** that in the original Model Zoo, and evaluated on **val2017**.
47
- PP-YOLOE used 8 GPUs for mixed precision training, if **GPU number** or **mini-batch size** is changed, **learning rate** should be adjusted according to the formula **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)**.
48 49
- PP-YOLOE inference speed is tesed on single Tesla V100 with batch size as 1, **CUDA 10.2**, **CUDNN 7.6.5**, **TensorRT 6.0.1.8** in TensorRT mode.
- Refer to [Speed testing](#Speed-testing) to reproduce the speed testing results of PP-YOLOE.
50 51
- If you set `--run_benchmark=True`,you should install these dependencies at first, `pip install pynvml psutil GPUtil`.

52 53 54 55 56 57 58 59 60 61 62 63

### Feature Models

The PaddleDetection team provides configs and weights of various feature detection models based on PP-YOLOE, which users can download for use:

|Scenarios | Related Datasets | Links|
| :--------: | :---------: | :------: |
|Pedestrian Detection | CrowdHuman | [pphuman](../pphuman) |
|Vehicle Detection | BDD100K, UA-DETRAC | [ppvehicle](../ppvehicle) |
|Small Object Detection | VisDrone | [visdrone](../visdrone) |


64 65
## Getting Start

66
### Training
67 68 69 70 71 72 73

Training PP-YOLOE with mixed precision on 8 GPUs with following command

```bash
python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml --amp
```

W
Wenyu 已提交
74 75 76 77
**Notes:**
- use `--amp` to train with default config to avoid out of memeory.
- PaddleDetection supports multi-machine distribued training, you can refer to [DistributedTraining tutorial](../../docs/DistributedTraining_en.md).

78

79
### Evaluation
80 81 82 83 84 85 86 87 88

Evaluating PP-YOLOE on COCO val2017 dataset in single GPU with following commands:

```bash
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams
```

For evaluation on COCO test-dev2017 dataset, please download COCO test-dev2017 dataset from [COCO dataset download](https://cocodataset.org/#download) and decompress to COCO dataset directory and configure `EvalDataset` like `configs/ppyolo/ppyolo_test.yml`.

89
### Inference
90 91 92 93 94 95 96 97 98 99 100

Inference images in single GPU with following commands, use `--infer_img` to inference a single image and `--infer_dir` to inference all images in the directory.

```bash
# inference single image
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams --infer_img=demo/000000014439_640x640.jpg

# inference all images in the directory
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams --infer_dir=demo
```

101
### Exporting models
102

103
For deployment on GPU or speed testing, model should be first exported to inference model using `tools/export_model.py`.
W
Wenyu 已提交
104

105
**Exporting PP-YOLOE for Paddle Inference without TensorRT**, use following command
106 107

```bash
Q
qingqing01 已提交
108
python tools/export_model.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams
109 110
```

111
**Exporting PP-YOLOE for Paddle Inference with TensorRT** for better performance, use following command with extra `-o trt=True` setting.
112 113

```bash
Q
qingqing01 已提交
114
python tools/export_model.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams trt=True
115 116
```

117
If you want to export PP-YOLOE model to **ONNX format**, use following command refer to [PaddleDetection Model Export as ONNX Format Tutorial](../../deploy/EXPORT_ONNX_MODEL_en.md).
118 119

```bash
120 121
# export inference model
python tools/export_model.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml --output_dir=output_inference -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams
122

123 124 125 126 127
# install paddle2onnx
pip install paddle2onnx

# convert to onnx
paddle2onnx --model_dir output_inference/ppyoloe_crn_l_300e_coco --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 11 --save_file ppyoloe_crn_l_300e_coco.onnx
128 129 130

```

131 132 133 134 135 136 137
**Notes:** ONNX model only supports batch_size=1 now

### Speed testing

For fair comparison, the speed in [Model Zoo](#Model-Zoo) do not contains the time cost of data reading and post-processing(NMS), which is same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) in testing method. Thus, you should export model with extra `-o exclude_nms=True` setting.

**Using Paddle Inference without TensorRT** to test speed, run following command
138 139 140

```bash
# export inference model
141
python tools/export_model.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams exclude_nms=True
142

143 144 145
# speed testing with run_benchmark=True
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_crn_l_300e_coco --image_file=demo/000000014439_640x640.jpg --run_mode=paddle --device=gpu --run_benchmark=True
```
146

147 148 149 150 151 152 153 154 155 156 157
**Using Paddle Inference with TensorRT** to test speed, run following command

```bash
# export inference model with trt=True
python tools/export_model.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams exclude_nms=True trt=True

# speed testing with run_benchmark=True,run_mode=trt_fp32/trt_fp16
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_crn_l_300e_coco --image_file=demo/000000014439_640x640.jpg --run_mode=trt_fp16 --device=gpu --run_benchmark=True

```

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
**Using TensorRT Inference with ONNX** to test speed, run following command

```bash
# export inference model with trt=True
python tools/export_model.py -c configs/ppyoloe/ppyoloe_crn_s_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_300e_coco.pdparams exclude_nms=True trt=True

# convert to onnx
paddle2onnx --model_dir output_inference/ppyoloe_crn_s_300e_coco --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file ppyoloe_crn_s_300e_coco.onnx

# trt inference using fp16 and batch_size=1
trtexec --onnx=./ppyoloe_crn_s_300e_coco.onnx --saveEngine=./ppyoloe_s_bs1.engine --workspace=1024 --avgRuns=1000 --shapes=image:1x3x640x640,scale_factor:1x2 --fp16

# trt inference using fp16 and batch_size=32
trtexec --onnx=./ppyoloe_crn_s_300e_coco.onnx --saveEngine=./ppyoloe_s_bs32.engine --workspace=1024 --avgRuns=1000 --shapes=image:32x3x640x640,scale_factor:32x2 --fp16

# Using the above script, T4 and tensorrt 7.2 machine, the speed of PPYOLOE-s model is as follows,

# batch_size=1, 2.80ms, 357fps
# batch_size=32, 67.69ms, 472fps

```


181 182 183 184 185 186
### Deployment

PP-YOLOE can be deployed by following approches:
  - Paddle Inference [Python](../../deploy/python) & [C++](../../deploy/cpp)
  - [Paddle-TensorRT](../../deploy/TENSOR_RT.md)
  - [PaddleServing](https://github.com/PaddlePaddle/Serving)
W
Wenyu 已提交
187
  - [PaddleSlim](../slim)
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

Next, we will introduce how to use Paddle Inference to deploy PP-YOLOE models in TensorRT FP16 mode.

First, refer to [Paddle Inference Docs](https://www.paddlepaddle.org.cn/inference/master/user_guides/download_lib.html#python), download and install packages corresponding to CUDA, CUDNN and TensorRT version.

Then, Exporting PP-YOLOE for Paddle Inference **with TensorRT**, use following command.

```bash
python tools/export_model.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams trt=True
```

Finally, inference in TensorRT FP16 mode.

```bash
# inference single image
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_crn_l_300e_coco --image_file=demo/000000014439_640x640.jpg --device=gpu --run_mode=trt_fp16

# inference all images in the directory
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_crn_l_300e_coco --image_dir=demo/ --device=gpu  --run_mode=trt_fp16
207 208 209

```

210
**Notes:**
211 212 213 214
- TensorRT will perform optimization for the current hardware platform according to the definition of the network, generate an inference engine and serialize it into a file. This inference engine is only applicable to the current hardware hardware platform. If your hardware and software platform has not changed, you can set `use_static=True` in [enable_tensorrt_engine](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/python/infer.py#L660). In this way, the serialized file generated will be saved in the `output_inference` folder, and the saved serialized file will be loaded the next time when TensorRT is executed.
- PaddleDetection release/2.4 and later versions will support NMS calling TensorRT, which requires PaddlePaddle release/2.3 and later versions.

### Other Datasets
W
Wenyu 已提交
215 216 217 218 219 220 221

Model | AP | AP<sub>50</sub>
---|---|---
[YOLOX](https://github.com/Megvii-BaseDetection/YOLOX) | 22.6 | 37.5
[YOLOv5](https://github.com/ultralytics/yolov5) | 26.0 | 42.7
**PP-YOLOE** | **30.5** | **46.4**

222
**Notes**
W
Wenyu 已提交
223 224 225 226 227
- Here, we use [VisDrone](https://github.com/VisDrone/VisDrone-Dataset) dataset, and to detect 9 objects including `person, bicycles, car, van, truck, tricyle, awning-tricyle, bus, motor`.
- Above models trained using official default config, and load pretrained parameters on COCO dataset.
- *Due to the limited time, more verification results will be supplemented in the future. You are also welcome to contribute to PP-YOLOE*


228 229 230 231 232 233 234 235 236 237 238
## Appendix

Ablation experiments of PP-YOLOE.

| NO.  |        Model                 | Box AP<sup>val</sup> | Params(M) | FLOPs(G) | V100 FP32 FPS |
| :--: | :---------------------------: | :------------------: | :-------: | :------: | :-----------: |
|  A   | PP-YOLOv2          |         49.1         |   54.58   |  115.77   |     68.9     |
|  B   | A + Anchor-free    |         48.8         |   54.27   |  114.78   |     69.8     |
|  C   | B + CSPRepResNet   |         49.5         |   47.42   |  101.87   |     85.5     |
|  D   | C + TAL            |         50.4         |   48.32   |  104.75   |     84.0     |
|  E   | D + ET-Head        |         50.9         |   52.20   |  110.07   |     78.1     |