Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
ff19b9cf
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ff19b9cf
编写于
9月 27, 2020
作者:
W
weishengyu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ghostnet
上级
5e092259
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
347 addition
and
0 deletion
+347
-0
ppcls/modeling/architectures/ghostnet.py
ppcls/modeling/architectures/ghostnet.py
+347
-0
未找到文件。
ppcls/modeling/architectures/ghostnet.py
0 → 100644
浏览文件 @
ff19b9cf
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import
math
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.nn
import
Conv2d
,
BatchNorm
,
AdaptiveAvgPool2d
,
Linear
from
paddle.fluid.regularizer
import
L2DecayRegularizer
from
paddle.nn.initializer
import
Uniform
from
paddle
import
fluid
class
ConvBNLayer
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
bn_name
=
name
+
"_bn"
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
,
regularizer
=
L2DecayRegularizer
(
regularization_coeff
=
0.0
)
),
bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
,
regularizer
=
L2DecayRegularizer
(
regularization_coeff
=
0.0
)
),
moving_mean_name
=
bn_name
+
"_mean"
,
moving_variance_name
=
bn_name
+
"_variance"
)
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
SEBlock
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
reduction_ratio
=
4
,
name
=
None
):
super
(
SEBlock
,
self
).
__init__
()
self
.
pool2d_gap
=
AdaptiveAvgPool2d
(
1
)
self
.
_num_channels
=
num_channels
stdv
=
1.0
/
math
.
sqrt
(
num_channels
*
1.0
)
med_ch
=
num_channels
//
reduction_ratio
self
.
squeeze
=
Linear
(
num_channels
,
med_ch
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
"_1_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_1_offset"
)
)
stdv
=
1.0
/
math
.
sqrt
(
med_ch
*
1.0
)
self
.
excitation
=
Linear
(
med_ch
,
num_channels
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
"_2_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_2_offset"
)
)
def
forward
(
self
,
inputs
):
pool
=
self
.
pool2d_gap
(
inputs
)
pool
=
paddle
.
reshape
(
pool
,
shape
=
[
-
1
,
self
.
_num_channels
])
squeeze
=
self
.
squeeze
(
pool
)
squeeze
=
F
.
relu
(
squeeze
)
excitation
=
self
.
excitation
(
squeeze
)
excitation
=
F
.
sigmoid
(
excitation
)
excitation
=
paddle
.
reshape
(
excitation
,
shape
=
[
-
1
,
self
.
_num_channels
,
1
,
1
]
)
out
=
inputs
*
excitation
return
out
class
GhostModule
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
output_channels
,
kernel_size
=
1
,
ratio
=
2
,
dw_size
=
3
,
stride
=
1
,
relu
=
True
,
name
=
None
):
super
(
GhostModule
,
self
).
__init__
()
init_channels
=
int
(
math
.
ceil
(
output_channels
/
ratio
))
new_channels
=
int
(
init_channels
*
(
ratio
-
1
))
self
.
primary_conv
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
init_channels
,
filter_size
=
kernel_size
,
stride
=
stride
,
groups
=
1
,
act
=
"relu"
if
relu
else
None
,
name
=
name
+
"_primary_conv"
)
self
.
cheap_operation
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
new_channels
,
filter_size
=
dw_size
,
stride
=
1
,
groups
=
init_channels
,
act
=
"relu"
if
relu
else
None
,
name
=
name
+
"_cheap_operation"
)
def
forward
(
self
,
inputs
):
x
=
self
.
primary_conv
(
inputs
)
y
=
self
.
cheap_operation
(
x
)
out
=
paddle
.
concat
([
x
,
y
],
axis
=
1
)
return
out
class
GhostBottleneck
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
hidden_dim
,
output_channels
,
kernel_size
,
stride
,
use_se
,
name
=
None
):
super
(
GhostBottleneck
,
self
).
__init__
()
self
.
_stride
=
stride
self
.
_use_se
=
use_se
self
.
_num_channels
=
num_channels
self
.
_output_channels
=
output_channels
self
.
ghost_module_1
=
GhostModule
(
num_channels
=
num_channels
,
output_channels
=
hidden_dim
,
kernel_size
=
1
,
stride
=
1
,
relu
=
True
,
name
=
name
+
"_ghost_module_1"
)
if
stride
==
2
:
self
.
depthwise_conv
=
ConvBNLayer
(
num_channels
=
hidden_dim
,
num_filters
=
hidden_dim
,
filter_size
=
kernel_size
,
stride
=
stride
,
groups
=
hidden_dim
,
act
=
None
,
name
=
name
+
"_depthwise"
)
if
use_se
:
self
.
se_block
=
SEBlock
(
num_channels
=
hidden_dim
,
name
=
name
+
"_se"
)
self
.
ghost_module_2
=
GhostModule
(
num_channels
=
num_channels
,
output_channels
=
output_channels
,
kernel_size
=
1
,
relu
=
False
,
name
=
name
+
"_ghost_module_2"
)
if
stride
!=
1
or
num_channels
!=
output_channels
:
self
.
shortcut_depthwise
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_channels
,
filter_size
=
kernel_size
,
stride
=
stride
,
groups
=
num_channels
,
act
=
None
,
name
=
name
+
"_shotcut_depthwise"
)
self
.
shortcut_conv
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
output_channels
,
filter_size
=
1
,
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
name
+
"_shotcut_conv"
)
def
forward
(
self
,
inputs
):
x
=
self
.
ghost_module
(
inputs
)
if
self
.
_stride
==
2
:
x
=
self
.
depthwise_conv
(
x
)
if
self
.
_use_se
:
x
=
self
.
se_block
(
x
)
x
=
self
.
ghost_module_2
(
x
)
if
self
.
_stride
==
1
and
self
.
_num_channels
==
self
.
_output_channels
:
shortcut
=
inputs
else
:
shortcut
=
self
.
shortcut_depthwise
(
inputs
)
shortcut
=
self
.
shortcut_conv
(
shortcut
)
return
paddle
.
elementwise_add
(
x
=
x
,
y
=
shortcut
,
axis
=-
1
)
class
GhostNet
(
nn
.
Layer
):
def
__init__
(
self
,
scale
,
class_dim
=
1000
):
super
(
GhostNet
,
self
).
__init__
()
self
.
cfgs
=
[
# k, t, c, SE, s
[
3
,
16
,
16
,
0
,
1
],
[
3
,
48
,
24
,
0
,
2
],
[
3
,
72
,
24
,
0
,
1
],
[
5
,
72
,
40
,
1
,
2
],
[
5
,
120
,
40
,
1
,
1
],
[
3
,
240
,
80
,
0
,
2
],
[
3
,
200
,
80
,
0
,
1
],
[
3
,
184
,
80
,
0
,
1
],
[
3
,
184
,
80
,
0
,
1
],
[
3
,
480
,
112
,
1
,
1
],
[
3
,
672
,
112
,
1
,
1
],
[
5
,
672
,
160
,
1
,
2
],
[
5
,
960
,
160
,
0
,
1
],
[
5
,
960
,
160
,
1
,
1
],
[
5
,
960
,
160
,
0
,
1
],
[
5
,
960
,
160
,
1
,
1
]
]
self
.
scale
=
scale
output_channels
=
int
(
self
.
_make_divisible
(
16
*
self
.
scale
,
4
))
self
.
conv1
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
output_channels
,
filter_size
=
3
,
stride
=
2
,
groups
=
1
,
act
=
"relu"
,
name
=
"conv1"
)
# build inverted residual blocks
idx
=
0
self
.
ghost_bottleneck_list
=
[]
for
k
,
exp_size
,
c
,
use_se
,
s
in
self
.
cfgs
:
num_channels
=
output_channels
output_channels
=
int
(
self
.
_make_divisible
(
c
*
self
.
scale
,
4
))
hidden_dim
=
int
(
self
.
_make_divisible
(
exp_size
,
self
.
scale
,
4
))
ghost_bottleneck
=
GhostBottleneck
(
num_channels
=
num_channels
,
hidden_dim
=
hidden_dim
,
output_channels
=
output_channels
,
kernel_size
=
k
,
stride
=
s
,
use_se
=
use_se
,
name
=
"_ghostbottleneck"
+
str
(
idx
)
)
self
.
ghost_bottleneck_list
.
append
(
ghost_bottleneck
)
idx
+=
1
# build last several layers
num_channels
=
output_channels
output_channels
=
int
(
self
.
_make_divisible
(
exp_size
*
self
.
scale
,
4
))
self
.
conv_last
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
output_channels
,
filter_size
=
1
,
stride
=
1
,
groups
=
1
,
act
=
"relu"
,
name
=
"conv_last"
)
self
.
pool2d_gap
=
AdaptiveAvgPool2d
(
1
)
num_channels
=
output_channels
output_channels
=
1280
self
.
fc_0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
output_channels
,
filter_size
=
1
,
stride
=
1
,
act
=
"relu"
,
name
=
"fc_0"
)
self
.
dropout
=
nn
.
Dropout
(
p
=
0.2
)
stdv
=
1.0
/
math
.
sqrt
(
output_channels
*
1.0
)
self
.
fc_1
=
Linear
(
output_channels
,
class_dim
,
param_attr
=
ParamAttr
(
name
=
"fc_1_weights"
,
initializer
=
Uniform
(
-
stdv
,
stdv
)
)
)
def
forward
(
self
,
inputs
):
x
=
self
.
conv1
(
inputs
)
for
ghost_bottleneck
in
self
.
ghost_bottleneck_list
:
x
=
ghost_bottleneck
(
x
)
x
=
self
.
conv_last
(
x
)
x
=
self
.
pool2d_gap
(
x
)
x
=
self
.
fc_0
(
x
)
x
=
self
.
dropout
(
x
)
x
=
self
.
fc_1
(
x
)
return
x
def
_make_divisible
(
self
,
v
,
divisor
,
min_value
=
None
):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if
min_value
is
None
:
min_value
=
divisor
new_v
=
max
(
min_value
,
int
(
v
+
divisor
/
2
)
//
divisor
*
divisor
)
# Make sure that round down does not go down by more than 10%.
if
new_v
<
0.9
*
v
:
new_v
+=
divisor
return
new_v
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录