Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
fde5f523
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
116
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fde5f523
编写于
12月 31, 2020
作者:
W
Wei Shengyu
提交者:
GitHub
12月 31, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
添加第6期FAQ (#530)
* add 1230 FAQ * modify according to comments * change FAQ update date in readme
上级
aa8e3c11
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
38 addition
and
1 deletion
+38
-1
README_cn.md
README_cn.md
+1
-1
docs/zh_CN/faq_series/faq_2020_s1.md
docs/zh_CN/faq_series/faq_2020_s1.md
+37
-0
未找到文件。
README_cn.md
浏览文件 @
fde5f523
...
...
@@ -90,7 +90,7 @@
-
[
10万类图像分类预训练模型
](
./docs/zh_CN/application/transfer_learning.md
)
-
[
通用目标检测
](
./docs/zh_CN/application/object_detection.md
)
-
FAQ
-
[
图像分类2020第一季精选问题(近期更新2020.12.
17
)
](
./docs/zh_CN/faq_series/faq_2020_s1.md
)
-
[
图像分类2020第一季精选问题(近期更新2020.12.
31
)
](
./docs/zh_CN/faq_series/faq_2020_s1.md
)
-
[
图像分类通用30个问题
](
./docs/zh_CN/faq.md
)
-
[
PaddleClas实战15个问题
](
./docs/zh_CN/faq.md
)
-
[
赛事支持
](
./docs/zh_CN/competition_support.md
)
...
...
docs/zh_CN/faq_series/faq_2020_s1.md
浏览文件 @
fde5f523
...
...
@@ -7,6 +7,7 @@
*
[
第3期
](
#第3期
)(
2020.11.18
)
*
[
第4期
](
#第4期
)(
2020.12.07
)
*
[
第5期
](
#第5期
)(
2020.12.17
)
*
[
第6期
](
#第6期
)(
2020.12.30
)
<a
name=
"第1期"
></a>
## 第1期
...
...
@@ -332,3 +333,39 @@ Cosine_decay和piecewise_decay的学习率变化曲线如下图所示,容易
-
挖掘相关数据:用在现有数据集上训练饱和的模型去对相关的数据做预测,将置信度较高的数据打label后加入训练集进一步训练,如此循环操作,可进一步提升模型的精度。
-
知识蒸馏:可以先使用一个较大的模型在该数据集上训练一个精度较高的teacher model,然后使用该teacher model去教导一个Student model,其中,Student model即为目标模型。PaddleClas提供了百度自研的SSLD知识蒸馏方案,即使在ImageNet-1k这么有挑战的分类任务上,其也能稳定提升3%以上。SSLD知识蒸馏的的章节请参考
[
**SSLD知识蒸馏**
](
https://paddleclas.readthedocs.io/zh_CN/latest/advanced_tutorials/distillation/distillation.html
)
。
<a
name=
"第6期"
></a>
## 第6期
### Q6.1: PaddleClas的几个分支有什么区别?应该如何选择?
**A**
: PaddleClas目前共有3种分支:
动态图分支:dygraph分支是PaddleClas的默认分支,也是更新最快的分支。所有的新功能、新改动都会先在dygraph分支上进行。如果想追踪PaddleClas的最新进展,可以关注这个分支。这个分支主要支持动态图,会跟着paddlepaddle的版本一起更新。
稳定版本分支:快速更新能够让关注者了解最新进展,但也会带来不稳定性。因此在一些关键的时间点,我们会从dygraph分支中拉出分支,提供稳定的版本。这些分支的名字与paddlepaddle的版本对应,如 2.0-beta 为支持paddlepaddle2.0-beta的稳定版本。这些分支一般只会修复bug,而不更新新的特性和模型。
静态图分支:master分支是使用静态图版本的分支,主要用来支持一些老用户的使用,也只进行一些简单维护,不会更新新的特性和模型。不建议新用户使用静态图分支。老用户如果有条件,也建议迁到动态图分支或稳定版本分支。
总的来说,如果想跟进PaddleClas的最新进展,建议选择dygraph分支,如果需要稳定版本,建议选择最新的稳定版本分支。
### Q6.2: 什么是静态图模式?
**A**
: 静态图模式即为声明式编程模式。许多深度学习框架如tensorflow,mxnet等最初都使用这种模式。在静态图模式中,需要先定义好模型结构,之后框架会根据模型结构进行编译和优化,构建"计算图"。可以简单的理解为,静态图模式是"计算图"静态不变的模式。静态图的优势在于编译器一般只需要构建一次计算图,效率相对较高,缺点在于不够灵活,调试麻烦。例如在paddle中运行一次静态图模型,需要完整所有的运算,之后根据特定的key来提取输出,无法实时得到结果。
### Q6.3: 什么是动态图模式?
**A**
: 动态图模式即为命令式编程模式,用户无需预先定义网络结构,每行代码都可以直接运行得到结果。相比静态图模式,动态图模式对用户更加友好,调试也更方便。此外,动态图模式的结构设计也更加灵活,可以在运行过程中随时调整结构。
PaddleClas目前持续更新的dygraph分支,主要采用动态图模式。如果您是新用户,建议使用动态图模式来进行开发和训练。如果推理预测时有性能需求,可以在训练完成后,将动态图模型转为静态图模型提高效率。
### Q6.4: 动态图模型的预测效率有时不如静态图,应该怎么办?
**A**
: 可以使用转换工具,将动态图模型转换为静态图模型,具体可以参考https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc1/guides/04_dygraph_to_static/index_cn.html。
### Q6.5: 构建分类数据集时,如何构建"背景"类别的数据?
**A**
: 实际使用中,常常需要自己构建一个分类数据集来进行训练。除了所需要的类别数据之外,还需要一个额外的类别,即"背景"类别。例如做一个猫狗分类,猫为一类,狗为一类,如果我们的分类器只有两类,那么输入一张兔子的图片,也会被强制的分到这两个类别中的一个。因此在训练时,应添加一些非目标类别的数据,作为"背景"类别的数据。
构建"背景"类别的数据时,首先应从实际需求的角度出发。还是以猫狗分类器为例,如果实际测试的数据都是动物,那么"背景"类别的数据就应该包含一些除猫狗之外的动物。而如果测试的数据还包含更多类别,例如一棵树,那么"背景"类别的数据就要设置的更加丰富。
简单来说,"背景"类别的数据,要根据实际场景中可能出现的情况去收集。情况越多,需要涵盖的数据种类就越多,任务也会相应的越困难。因此实际处理中,最好能对问题进行限制,避免浪费资源和算力。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录