提交 fbbff9d4 编写于 作者: S sibo2rr

add file

上级 ff5f983c
# PaddleClas 社区贡献指南
---
------
## 目录
......
......@@ -152,7 +152,7 @@ AMP:
* 然而 *HRNet* 的作者认为这种逐步降低空间分辨率的设计思想并不适合目标检测(图像区域层次的分类任务)、语义分割(图像像素层次的分类任务)等场景,因为空间分辨率在逐步降低的过程中,会丢失很多信息,最终学习得到的特征难以表达原始图像在高空间分辨率的信息,而区域层次分类任务和像素层次分类任务都对空间精度十分敏感。
* 因此 *HRNet* 的作者提出了并联不同空间分辨率特征图的思想,与此相对,*VGG* 等神经网络则是通过不同的卷积池化层来串联不同空间分辨率的特征图。并且,*HRNet* 通过连接同等深度、不同空间分辨率的特征图,使得不同空间分辨率特征图的信息可以得到充分交换,具体的网络结构如下图所示。
<img alt="../../images/faq/HRNet.png" src="../../images/faq/HRNet.png" width="800">
![](../../images/faq/HRNet.png)
### Q4.3: 在 HRNet 中,对于不同空间分辨率的特征图之间,是如何建立连接的?
......@@ -170,6 +170,7 @@ AMP:
![](../../images/faq/SE_structure.png)
**A**:
* *SE*结构具体如上图所示,首先,*Ftr* 表示常规的卷积操作,*X**U* 则是 *Ftr* 的输入与输出的特征图,在得到特征图*U*后,使用 *Fsq**Fex* 操作求得 *scale* 向量,*scale* 向量维度为 *C*,与 *U* 通道数相同,因此可以通过乘积的方式作用到 *U* 上,进而得到 *X~*
* 具体地,*Fsq**Global Average Pooling* 操作,*SENet* 作者将其称之为 *Squeeze*,因为该操作可以将 *U**C × H × W* 压缩到 *C × 1 × 1*,对 *Fsq* 的输出再做 *Fex* 操作。
* *Fex*操作表示两次全连接,作者将该操作称为 *Excitation*。其中第一次全连接将向量的维度从 *1 × 1 × C* 压缩到 *1 × 1 × C/r*,然后使用 *RELU*,再通过第二次全连接将向量的维度恢复到 *C*,这样操作的目的是为了减小计算量,*SENet* 作者通过实验得出结论:在 *r=16* 时可以获得增益与计算量之间的平衡。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册