Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
f9413d1a
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f9413d1a
编写于
9月 17, 2020
作者:
L
littletomatodonkey
提交者:
GitHub
9月 17, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #278 from littletomatodonkey/static/fix_readme_en
fix readme en
上级
1adf8f4e
01f5042e
变更
10
展开全部
隐藏空白更改
内联
并排
Showing
10 changed file
with
314 addition
and
127 deletion
+314
-127
README.md
README.md
+7
-3
README_en.md
README_en.md
+281
-123
docs/en/models/HRNet_en.md
docs/en/models/HRNet_en.md
+3
-0
docs/en/models/ResNet_and_vd_en.md
docs/en/models/ResNet_and_vd_en.md
+3
-0
docs/en/models/models_intro_en.md
docs/en/models/models_intro_en.md
+3
-0
docs/en/update_history_en.md
docs/en/update_history_en.md
+5
-1
docs/zh_CN/models/HRNet.md
docs/zh_CN/models/HRNet.md
+3
-0
docs/zh_CN/models/ResNet_and_vd.md
docs/zh_CN/models/ResNet_and_vd.md
+3
-0
docs/zh_CN/models/models_intro.md
docs/zh_CN/models/models_intro.md
+3
-0
docs/zh_CN/update_history.md
docs/zh_CN/update_history.md
+3
-0
未找到文件。
README.md
浏览文件 @
f9413d1a
...
@@ -7,6 +7,7 @@
...
@@ -7,6 +7,7 @@
飞桨图像分类套件PaddleClas是飞桨为工业界和学术界所准备的一个图像分类任务的工具集,助力使用者训练出更好的视觉模型和应用落地。
飞桨图像分类套件PaddleClas是飞桨为工业界和学术界所准备的一个图像分类任务的工具集,助力使用者训练出更好的视觉模型和应用落地。
**近期更新**
**近期更新**
-
2020.09.17 添加HRNet_W48_C_ssld模型,在ImageNet上Top-1 Acc可达0.836;添加ResNet34_vd_ssld模型,在ImageNet上Top-1 Acc可达0.797。
-
2020.09.07 添加HRNet_W18_C_ssld模型,在ImageNet上Top-1 Acc可达0.81162;添加MobileNetV3_small_x0_35_ssld模型,在ImageNet上Top-1 Acc可达0.5555。
-
2020.09.07 添加HRNet_W18_C_ssld模型,在ImageNet上Top-1 Acc可达0.81162;添加MobileNetV3_small_x0_35_ssld模型,在ImageNet上Top-1 Acc可达0.5555。
-
2020.07.14 添加Res2Net200_vd_26w_4s_ssld模型,在ImageNet上Top-1 Acc可达85.13%;添加Fix_ResNet50_vd_ssld_v2模型,在ImageNet上Top-1 Acc可达84.0%。
-
2020.07.14 添加Res2Net200_vd_26w_4s_ssld模型,在ImageNet上Top-1 Acc可达85.13%;添加Fix_ResNet50_vd_ssld_v2模型,在ImageNet上Top-1 Acc可达84.0%。
-
2020.06.17 添加英文文档。
-
2020.06.17 添加英文文档。
...
@@ -17,7 +18,7 @@
...
@@ -17,7 +18,7 @@
## 特性
## 特性
-
丰富的模型库:基于ImageNet1k分类数据集,PaddleClas提供了24个系列的分类网络结构和训练配置,12
1
个预训练模型和性能评估。
-
丰富的模型库:基于ImageNet1k分类数据集,PaddleClas提供了24个系列的分类网络结构和训练配置,12
2
个预训练模型和性能评估。
-
SSLD知识蒸馏:基于该方案蒸馏模型的识别准确率普遍提升3%以上。
-
SSLD知识蒸馏:基于该方案蒸馏模型的识别准确率普遍提升3%以上。
...
@@ -41,8 +42,9 @@
...
@@ -41,8 +42,9 @@
-
[
ResNet及其Vd系列
](
#ResNet及其Vd系列
)
-
[
ResNet及其Vd系列
](
#ResNet及其Vd系列
)
-
[
移动端系列
](
#移动端系列
)
-
[
移动端系列
](
#移动端系列
)
-
[
SEResNeXt与Res2Net系列
](
#SEResNeXt与Res2Net系列
)
-
[
SEResNeXt与Res2Net系列
](
#SEResNeXt与Res2Net系列
)
-
[
Inception系列
](
#Inception系列
)
-
[
DPN与DenseNet系列
](
#DPN与DenseNet系列
)
-
[
DPN与DenseNet系列
](
#DPN与DenseNet系列
)
-
[
HRNet
](
HRNet系列
)
-
[
Inception系列
](
#Inception系列
)
-
[
EfficientNet与ResNeXt101_wsl系列
](
#EfficientNet与ResNeXt101_wsl系列
)
-
[
EfficientNet与ResNeXt101_wsl系列
](
#EfficientNet与ResNeXt101_wsl系列
)
-
[
ResNeSt与RegNet系列
](
#ResNeSt与RegNet系列
)
-
[
ResNeSt与RegNet系列
](
#ResNeSt与RegNet系列
)
-
模型训练/评估
-
模型训练/评估
...
@@ -103,6 +105,7 @@ ResNet及其Vd系列模型的精度、速度指标如下表所示,更多关于
...
@@ -103,6 +105,7 @@ ResNet及其Vd系列模型的精度、速度指标如下表所示,更多关于
| ResNet18_vd | 0.7226 | 0.9080 | 1.54557 | 3.85363 | 4.14 | 11.71 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar
)
|
| ResNet18_vd | 0.7226 | 0.9080 | 1.54557 | 3.85363 | 4.14 | 11.71 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar
)
|
| ResNet34 | 0.7457 | 0.9214 | 2.34957 | 5.89821 | 7.36 | 21.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar
)
|
| ResNet34 | 0.7457 | 0.9214 | 2.34957 | 5.89821 | 7.36 | 21.8 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar
)
|
| ResNet34_vd | 0.7598 | 0.9298 | 2.43427 | 6.22257 | 7.39 | 21.82 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar
)
|
| ResNet34_vd | 0.7598 | 0.9298 | 2.43427 | 6.22257 | 7.39 | 21.82 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar
)
|
| ResNet34_vd_ssld | 0.7972 | 0.9490 | 2.43427 | 6.22257 | 7.39 | 21.82 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_ssld_pretrained.tar
)
|
| ResNet50 | 0.7650 | 0.9300 | 3.47712 | 7.84421 | 8.19 | 25.56 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar
)
|
| ResNet50 | 0.7650 | 0.9300 | 3.47712 | 7.84421 | 8.19 | 25.56 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar
)
|
| ResNet50_vc | 0.7835 | 0.9403 | 3.52346 | 8.10725 | 8.67 | 25.58 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar
)
|
| ResNet50_vc | 0.7835 | 0.9403 | 3.52346 | 8.10725 | 8.67 | 25.58 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar
)
|
| ResNet50_vd | 0.7912 | 0.9444 | 3.53131 | 8.09057 | 8.67 | 25.58 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
)
|
| ResNet50_vd | 0.7912 | 0.9444 | 3.53131 | 8.09057 | 8.67 | 25.58 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
)
|
...
@@ -235,6 +238,7 @@ HRNet系列模型的精度、速度指标如下表所示,更多关于该系列
...
@@ -235,6 +238,7 @@ HRNet系列模型的精度、速度指标如下表所示,更多关于该系列
| HRNet_W40_C | 0.7877 | 0.9447 | 12.12202 | 25.68184 | 25.41 | 57.55 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar
)
|
| HRNet_W40_C | 0.7877 | 0.9447 | 12.12202 | 25.68184 | 25.41 | 57.55 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar
)
|
| HRNet_W44_C | 0.7900 | 0.9451 | 13.19858 | 32.25202 | 29.79 | 67.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar
)
|
| HRNet_W44_C | 0.7900 | 0.9451 | 13.19858 | 32.25202 | 29.79 | 67.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar
)
|
| HRNet_W48_C | 0.7895 | 0.9442 | 13.70761 | 34.43572 | 34.58 | 77.47 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar
)
|
| HRNet_W48_C | 0.7895 | 0.9442 | 13.70761 | 34.43572 | 34.58 | 77.47 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar
)
|
| HRNet_W48_C_ssld | 0.8363 | 0.9682 | 13.70761 | 34.43572 | 34.58 | 77.47 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar
)
|
| HRNet_W64_C | 0.7930 | 0.9461 | 17.57527 | 47.9533 | 57.83 | 128.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar
)
|
| HRNet_W64_C | 0.7930 | 0.9461 | 17.57527 | 47.9533 | 57.83 | 128.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar
)
|
...
@@ -257,7 +261,7 @@ Inception系列模型的精度、速度指标如下表所示,更多关于该
...
@@ -257,7 +261,7 @@ Inception系列模型的精度、速度指标如下表所示,更多关于该
<a
name=
"EfficientNet与ResNeXt101_wsl系列"
></a>
<a
name=
"EfficientNet与ResNeXt101_wsl系列"
></a>
### EfficientNet与ResNeXt101_wsl系列
### EfficientNet与ResNeXt101_wsl系列
EfficientNet与ResNeXt101_wsl系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
EfficientNet与ResNeXt101_wsl系列模型文档
](
./docs/zh_CN/models/
Inception
.md
)
。
EfficientNet与ResNeXt101_wsl系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:
[
EfficientNet与ResNeXt101_wsl系列模型文档
](
./docs/zh_CN/models/
EfficientNet_and_ResNeXt101_wsl
.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | Flops(G) | Params(M) | 下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | Flops(G) | Params(M) | 下载地址 |
...
...
README_en.md
浏览文件 @
f9413d1a
此差异已折叠。
点击以展开。
docs/en/models/HRNet_en.md
浏览文件 @
f9413d1a
...
@@ -28,6 +28,7 @@ At present, there are 7 pretrained models of such models open-sourced by PaddleC
...
@@ -28,6 +28,7 @@ At present, there are 7 pretrained models of such models open-sourced by PaddleC
| HRNet_W40_C | 0.788 | 0.945 | 0.789 | 0.945 | 25.410 | 57.550 |
| HRNet_W40_C | 0.788 | 0.945 | 0.789 | 0.945 | 25.410 | 57.550 |
| HRNet_W44_C | 0.790 | 0.945 | 0.789 | 0.944 | 29.790 | 67.060 |
| HRNet_W44_C | 0.790 | 0.945 | 0.789 | 0.944 | 29.790 | 67.060 |
| HRNet_W48_C | 0.790 | 0.944 | 0.793 | 0.945 | 34.580 | 77.470 |
| HRNet_W48_C | 0.790 | 0.944 | 0.793 | 0.945 | 34.580 | 77.470 |
| HRNet_W48_C_ssld | 0.836 | 0.968 | 0.793 | 0.945 | 34.580 | 77.470 |
| HRNet_W64_C | 0.793 | 0.946 | 0.795 | 0.946 | 57.830 | 128.060 |
| HRNet_W64_C | 0.793 | 0.946 | 0.795 | 0.946 | 57.830 | 128.060 |
...
@@ -42,6 +43,7 @@ At present, there are 7 pretrained models of such models open-sourced by PaddleC
...
@@ -42,6 +43,7 @@ At present, there are 7 pretrained models of such models open-sourced by PaddleC
| HRNet_W40_C | 224 | 256 | 10.739 |
| HRNet_W40_C | 224 | 256 | 10.739 |
| HRNet_W44_C | 224 | 256 | 11.497 |
| HRNet_W44_C | 224 | 256 | 11.497 |
| HRNet_W48_C | 224 | 256 | 12.165 |
| HRNet_W48_C | 224 | 256 | 12.165 |
| HRNet_W48_C_ssld | 224 | 256 | 12.165 |
| HRNet_W64_C | 224 | 256 | 15.003 |
| HRNet_W64_C | 224 | 256 | 15.003 |
...
@@ -58,4 +60,5 @@ At present, there are 7 pretrained models of such models open-sourced by PaddleC
...
@@ -58,4 +60,5 @@ At present, there are 7 pretrained models of such models open-sourced by PaddleC
| HRNet_W40_C | 224 | 256 | 11.4229 | 19.1595 | 30.47984 | 12.12202 | 25.68184 | 48.90623 |
| HRNet_W40_C | 224 | 256 | 11.4229 | 19.1595 | 30.47984 | 12.12202 | 25.68184 | 48.90623 |
| HRNet_W44_C | 224 | 256 | 12.25778 | 22.75456 | 32.61275 | 13.19858 | 32.25202 | 59.09871 |
| HRNet_W44_C | 224 | 256 | 12.25778 | 22.75456 | 32.61275 | 13.19858 | 32.25202 | 59.09871 |
| HRNet_W48_C | 224 | 256 | 12.65015 | 23.12886 | 33.37859 | 13.70761 | 34.43572 | 63.01219 |
| HRNet_W48_C | 224 | 256 | 12.65015 | 23.12886 | 33.37859 | 13.70761 | 34.43572 | 63.01219 |
| HRNet_W48_C_ssld | 224 | 256 | 12.65015 | 23.12886 | 33.37859 | 13.70761 | 34.43572 | 63.01219 |
| HRNet_W64_C | 224 | 256 | 15.10428 | 27.68901 | 40.4198 | 17.57527 | 47.9533 | 97.11228 |
| HRNet_W64_C | 224 | 256 | 15.10428 | 27.68901 | 40.4198 | 17.57527 | 47.9533 | 97.11228 |
docs/en/models/ResNet_and_vd_en.md
浏览文件 @
f9413d1a
...
@@ -32,6 +32,7 @@ As can be seen from the above curves, the higher the number of layers, the highe
...
@@ -32,6 +32,7 @@ As can be seen from the above curves, the higher the number of layers, the highe
| ResNet18_vd | 0.723 | 0.908 | | | 4.140 | 11.710 |
| ResNet18_vd | 0.723 | 0.908 | | | 4.140 | 11.710 |
| ResNet34 | 0.746 | 0.921 | 0.732 | 0.913 | 7.360 | 21.800 |
| ResNet34 | 0.746 | 0.921 | 0.732 | 0.913 | 7.360 | 21.800 |
| ResNet34_vd | 0.760 | 0.930 | | | 7.390 | 21.820 |
| ResNet34_vd | 0.760 | 0.930 | | | 7.390 | 21.820 |
| ResNet34_vd_ssld | 0.797 | 0.949 | | | 7.390 | 21.820 |
| ResNet50 | 0.765 | 0.930 | 0.760 | 0.930 | 8.190 | 25.560 |
| ResNet50 | 0.765 | 0.930 | 0.760 | 0.930 | 8.190 | 25.560 |
| ResNet50_vc | 0.784 | 0.940 | | | 8.670 | 25.580 |
| ResNet50_vc | 0.784 | 0.940 | | | 8.670 | 25.580 |
| ResNet50_vd | 0.791 | 0.944 | 0.792 | 0.946 | 8.670 | 25.580 |
| ResNet50_vd | 0.791 | 0.944 | 0.792 | 0.946 | 8.670 | 25.580 |
...
@@ -57,6 +58,7 @@ As can be seen from the above curves, the higher the number of layers, the highe
...
@@ -57,6 +58,7 @@ As can be seen from the above curves, the higher the number of layers, the highe
| ResNet18_vd | 224 | 256 | 1.603 |
| ResNet18_vd | 224 | 256 | 1.603 |
| ResNet34 | 224 | 256 | 2.272 |
| ResNet34 | 224 | 256 | 2.272 |
| ResNet34_vd | 224 | 256 | 2.343 |
| ResNet34_vd | 224 | 256 | 2.343 |
| ResNet34_vd_ssld | 224 | 256 | 2.343 |
| ResNet50 | 224 | 256 | 2.939 |
| ResNet50 | 224 | 256 | 2.939 |
| ResNet50_vc | 224 | 256 | 3.041 |
| ResNet50_vc | 224 | 256 | 3.041 |
| ResNet50_vd | 224 | 256 | 3.165 |
| ResNet50_vd | 224 | 256 | 3.165 |
...
@@ -78,6 +80,7 @@ As can be seen from the above curves, the higher the number of layers, the highe
...
@@ -78,6 +80,7 @@ As can be seen from the above curves, the higher the number of layers, the highe
| ResNet18_vd | 224 | 256 | 1.39593 | 2.69063 | 3.88267 | 1.54557 | 3.85363 | 6.88121 |
| ResNet18_vd | 224 | 256 | 1.39593 | 2.69063 | 3.88267 | 1.54557 | 3.85363 | 6.88121 |
| ResNet34 | 224 | 256 | 2.23092 | 4.10205 | 5.54904 | 2.34957 | 5.89821 | 10.73451 |
| ResNet34 | 224 | 256 | 2.23092 | 4.10205 | 5.54904 | 2.34957 | 5.89821 | 10.73451 |
| ResNet34_vd | 224 | 256 | 2.23992 | 4.22246 | 5.79534 | 2.43427 | 6.22257 | 11.44906 |
| ResNet34_vd | 224 | 256 | 2.23992 | 4.22246 | 5.79534 | 2.43427 | 6.22257 | 11.44906 |
| ResNet34_vd | 224 | 256 | 2.23992 | 4.22246 | 5.79534 | 2.43427 | 6.22257 | 11.44906 |
| ResNet50 | 224 | 256 | 2.63824 | 4.63802 | 7.02444 | 3.47712 | 7.84421 | 13.90633 |
| ResNet50 | 224 | 256 | 2.63824 | 4.63802 | 7.02444 | 3.47712 | 7.84421 | 13.90633 |
| ResNet50_vc | 224 | 256 | 2.67064 | 4.72372 | 7.17204 | 3.52346 | 8.10725 | 14.45577 |
| ResNet50_vc | 224 | 256 | 2.67064 | 4.72372 | 7.17204 | 3.52346 | 8.10725 | 14.45577 |
| ResNet50_vd | 224 | 256 | 2.65164 | 4.84109 | 7.46225 | 3.53131 | 8.09057 | 14.45965 |
| ResNet50_vd | 224 | 256 | 2.65164 | 4.84109 | 7.46225 | 3.53131 | 8.09057 | 14.45965 |
...
...
docs/en/models/models_intro_en.md
浏览文件 @
f9413d1a
...
@@ -45,6 +45,7 @@ python tools/infer/predict.py \
...
@@ -45,6 +45,7 @@ python tools/infer/predict.py \
-
[
ResNet50_vc
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar
)
-
[
ResNet50_vc
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar
)
-
[
ResNet18_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar
)
-
[
ResNet18_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar
)
-
[
ResNet34_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar
)
-
[
ResNet34_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar
)
-
[
ResNet34_vd_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_ssld_pretrained.tar
)
-
[
ResNet50_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
)
-
[
ResNet50_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
)
-
[
ResNet50_vd_v2
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar
)
-
[
ResNet50_vd_v2
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar
)
-
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
)
-
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
)
...
@@ -149,11 +150,13 @@ python tools/infer/predict.py \
...
@@ -149,11 +150,13 @@ python tools/infer/predict.py \
-
HRNet series
-
HRNet series
-
HRNet series
<sup>
[
[13
](
#ref13
)
]
</sup>
(
[
paper link
](
https://arxiv.org/abs/1908.07919
)
)
-
HRNet series
<sup>
[
[13
](
#ref13
)
]
</sup>
(
[
paper link
](
https://arxiv.org/abs/1908.07919
)
)
-
[
HRNet_W18_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar
)
-
[
HRNet_W18_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar
)
-
[
HRNet_W18_C_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_ssld_pretrained.tar
)
-
[
HRNet_W30_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar
)
-
[
HRNet_W30_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar
)
-
[
HRNet_W32_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar
)
-
[
HRNet_W32_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar
)
-
[
HRNet_W40_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar
)
-
[
HRNet_W40_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar
)
-
[
HRNet_W44_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar
)
-
[
HRNet_W44_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar
)
-
[
HRNet_W48_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar
)
-
[
HRNet_W48_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar
)
-
[
HRNet_W48_C_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_ssld_pretrained.tar
)
-
[
HRNet_W64_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar
)
-
[
HRNet_W64_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar
)
...
...
docs/en/update_history_en.md
浏览文件 @
f9413d1a
# Release Notes
# Release Notes
*
2020.09.17
*
Add
`HRNet_W48_C_ssld`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 83.62%.
*
Add
`ResNet34_vd_ssld`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 79.72%.
*
2020.09.07
*
2020.09.07
*
Add
`HRNet_W18_C_ssld`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 81.16%.
*
Add
`HRNet_W18_C_ssld`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 81.16%.
*
Add
`MobileNetV3_small_x0_35_ssld`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 55.55%.
*
Add
`MobileNetV3_small_x0_35_ssld`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 55.55%.
...
@@ -9,7 +13,7 @@
...
@@ -9,7 +13,7 @@
*
Add
`Fix_ResNet50_vd_ssld_v2`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 84.00%.
*
Add
`Fix_ResNet50_vd_ssld_v2`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 84.00%.
*
2020.06.17
*
2020.06.17
*
Add English documents
。
*
Add English documents
.
*
2020.06.12
*
2020.06.12
*
Add support for training and evaluation on Windows or CPU.
*
Add support for training and evaluation on Windows or CPU.
...
...
docs/zh_CN/models/HRNet.md
浏览文件 @
f9413d1a
...
@@ -27,6 +27,7 @@ HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络,
...
@@ -27,6 +27,7 @@ HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络,
| HRNet_W40_C | 0.788 | 0.945 | 0.789 | 0.945 | 25.410 | 57.550 |
| HRNet_W40_C | 0.788 | 0.945 | 0.789 | 0.945 | 25.410 | 57.550 |
| HRNet_W44_C | 0.790 | 0.945 | 0.789 | 0.944 | 29.790 | 67.060 |
| HRNet_W44_C | 0.790 | 0.945 | 0.789 | 0.944 | 29.790 | 67.060 |
| HRNet_W48_C | 0.790 | 0.944 | 0.793 | 0.945 | 34.580 | 77.470 |
| HRNet_W48_C | 0.790 | 0.944 | 0.793 | 0.945 | 34.580 | 77.470 |
| HRNet_W48_C_ssld | 0.836 | 0.968 | 0.793 | 0.945 | 34.580 | 77.470 |
| HRNet_W64_C | 0.793 | 0.946 | 0.795 | 0.946 | 57.830 | 128.060 |
| HRNet_W64_C | 0.793 | 0.946 | 0.795 | 0.946 | 57.830 | 128.060 |
...
@@ -41,6 +42,7 @@ HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络,
...
@@ -41,6 +42,7 @@ HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络,
| HRNet_W40_C | 224 | 256 | 10.739 |
| HRNet_W40_C | 224 | 256 | 10.739 |
| HRNet_W44_C | 224 | 256 | 11.497 |
| HRNet_W44_C | 224 | 256 | 11.497 |
| HRNet_W48_C | 224 | 256 | 12.165 |
| HRNet_W48_C | 224 | 256 | 12.165 |
| HRNet_W48_C_ssld | 224 | 256 | 12.165 |
| HRNet_W64_C | 224 | 256 | 15.003 |
| HRNet_W64_C | 224 | 256 | 15.003 |
...
@@ -57,4 +59,5 @@ HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络,
...
@@ -57,4 +59,5 @@ HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络,
| HRNet_W40_C | 224 | 256 | 11.4229 | 19.1595 | 30.47984 | 12.12202 | 25.68184 | 48.90623 |
| HRNet_W40_C | 224 | 256 | 11.4229 | 19.1595 | 30.47984 | 12.12202 | 25.68184 | 48.90623 |
| HRNet_W44_C | 224 | 256 | 12.25778 | 22.75456 | 32.61275 | 13.19858 | 32.25202 | 59.09871 |
| HRNet_W44_C | 224 | 256 | 12.25778 | 22.75456 | 32.61275 | 13.19858 | 32.25202 | 59.09871 |
| HRNet_W48_C | 224 | 256 | 12.65015 | 23.12886 | 33.37859 | 13.70761 | 34.43572 | 63.01219 |
| HRNet_W48_C | 224 | 256 | 12.65015 | 23.12886 | 33.37859 | 13.70761 | 34.43572 | 63.01219 |
| HRNet_W48_C_ssld | 224 | 256 | 12.65015 | 23.12886 | 33.37859 | 13.70761 | 34.43572 | 63.01219 |
| HRNet_W64_C | 224 | 256 | 15.10428 | 27.68901 | 40.4198 | 17.57527 | 47.9533 | 97.11228 |
| HRNet_W64_C | 224 | 256 | 15.10428 | 27.68901 | 40.4198 | 17.57527 | 47.9533 | 97.11228 |
docs/zh_CN/models/ResNet_and_vd.md
浏览文件 @
f9413d1a
...
@@ -32,6 +32,7 @@ ResNet系列模型是在2015年提出的,一举在ILSVRC2015比赛中取得冠
...
@@ -32,6 +32,7 @@ ResNet系列模型是在2015年提出的,一举在ILSVRC2015比赛中取得冠
| ResNet18_vd | 0.723 | 0.908 | | | 4.140 | 11.710 |
| ResNet18_vd | 0.723 | 0.908 | | | 4.140 | 11.710 |
| ResNet34 | 0.746 | 0.921 | 0.732 | 0.913 | 7.360 | 21.800 |
| ResNet34 | 0.746 | 0.921 | 0.732 | 0.913 | 7.360 | 21.800 |
| ResNet34_vd | 0.760 | 0.930 | | | 7.390 | 21.820 |
| ResNet34_vd | 0.760 | 0.930 | | | 7.390 | 21.820 |
| ResNet34_vd_ssld | 0.797 | 0.949 | | | 7.390 | 21.820 |
| ResNet50 | 0.765 | 0.930 | 0.760 | 0.930 | 8.190 | 25.560 |
| ResNet50 | 0.765 | 0.930 | 0.760 | 0.930 | 8.190 | 25.560 |
| ResNet50_vc | 0.784 | 0.940 | | | 8.670 | 25.580 |
| ResNet50_vc | 0.784 | 0.940 | | | 8.670 | 25.580 |
| ResNet50_vd | 0.791 | 0.944 | 0.792 | 0.946 | 8.670 | 25.580 |
| ResNet50_vd | 0.791 | 0.944 | 0.792 | 0.946 | 8.670 | 25.580 |
...
@@ -58,6 +59,7 @@ ResNet系列模型是在2015年提出的,一举在ILSVRC2015比赛中取得冠
...
@@ -58,6 +59,7 @@ ResNet系列模型是在2015年提出的,一举在ILSVRC2015比赛中取得冠
| ResNet18_vd | 224 | 256 | 1.603 |
| ResNet18_vd | 224 | 256 | 1.603 |
| ResNet34 | 224 | 256 | 2.272 |
| ResNet34 | 224 | 256 | 2.272 |
| ResNet34_vd | 224 | 256 | 2.343 |
| ResNet34_vd | 224 | 256 | 2.343 |
| ResNet34_vd_ssld | 224 | 256 | 2.343 |
| ResNet50 | 224 | 256 | 2.939 |
| ResNet50 | 224 | 256 | 2.939 |
| ResNet50_vc | 224 | 256 | 3.041 |
| ResNet50_vc | 224 | 256 | 3.041 |
| ResNet50_vd | 224 | 256 | 3.165 |
| ResNet50_vd | 224 | 256 | 3.165 |
...
@@ -79,6 +81,7 @@ ResNet系列模型是在2015年提出的,一举在ILSVRC2015比赛中取得冠
...
@@ -79,6 +81,7 @@ ResNet系列模型是在2015年提出的,一举在ILSVRC2015比赛中取得冠
| ResNet18_vd | 224 | 256 | 1.39593 | 2.69063 | 3.88267 | 1.54557 | 3.85363 | 6.88121 |
| ResNet18_vd | 224 | 256 | 1.39593 | 2.69063 | 3.88267 | 1.54557 | 3.85363 | 6.88121 |
| ResNet34 | 224 | 256 | 2.23092 | 4.10205 | 5.54904 | 2.34957 | 5.89821 | 10.73451 |
| ResNet34 | 224 | 256 | 2.23092 | 4.10205 | 5.54904 | 2.34957 | 5.89821 | 10.73451 |
| ResNet34_vd | 224 | 256 | 2.23992 | 4.22246 | 5.79534 | 2.43427 | 6.22257 | 11.44906 |
| ResNet34_vd | 224 | 256 | 2.23992 | 4.22246 | 5.79534 | 2.43427 | 6.22257 | 11.44906 |
| ResNet34_vd_ssld | 224 | 256 | 2.23992 | 4.22246 | 5.79534 | 2.43427 | 6.22257 | 11.44906 |
| ResNet50 | 224 | 256 | 2.63824 | 4.63802 | 7.02444 | 3.47712 | 7.84421 | 13.90633 |
| ResNet50 | 224 | 256 | 2.63824 | 4.63802 | 7.02444 | 3.47712 | 7.84421 | 13.90633 |
| ResNet50_vc | 224 | 256 | 2.67064 | 4.72372 | 7.17204 | 3.52346 | 8.10725 | 14.45577 |
| ResNet50_vc | 224 | 256 | 2.67064 | 4.72372 | 7.17204 | 3.52346 | 8.10725 | 14.45577 |
| ResNet50_vd | 224 | 256 | 2.65164 | 4.84109 | 7.46225 | 3.53131 | 8.09057 | 14.45965 |
| ResNet50_vd | 224 | 256 | 2.65164 | 4.84109 | 7.46225 | 3.53131 | 8.09057 | 14.45965 |
...
...
docs/zh_CN/models/models_intro.md
浏览文件 @
f9413d1a
...
@@ -45,6 +45,7 @@ python tools/infer/predict.py \
...
@@ -45,6 +45,7 @@ python tools/infer/predict.py \
-
[
ResNet50_vc
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar
)
-
[
ResNet50_vc
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar
)
-
[
ResNet18_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar
)
-
[
ResNet18_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar
)
-
[
ResNet34_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar
)
-
[
ResNet34_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar
)
-
[
ResNet34_vd_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_ssld_pretrained.tar
)
-
[
ResNet50_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
)
-
[
ResNet50_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
)
-
[
ResNet50_vd_v2
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar
)
-
[
ResNet50_vd_v2
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar
)
-
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
)
-
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
)
...
@@ -149,11 +150,13 @@ python tools/infer/predict.py \
...
@@ -149,11 +150,13 @@ python tools/infer/predict.py \
-
HRNet系列
-
HRNet系列
-
HRNet系列
<sup>
[
[13
](
#ref13
)
]
</sup>
(
[
论文地址
](
https://arxiv.org/abs/1908.07919
)
)
-
HRNet系列
<sup>
[
[13
](
#ref13
)
]
</sup>
(
[
论文地址
](
https://arxiv.org/abs/1908.07919
)
)
-
[
HRNet_W18_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar
)
-
[
HRNet_W18_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar
)
-
[
HRNet_W18_C_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_ssld_pretrained.tar
)
-
[
HRNet_W30_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar
)
-
[
HRNet_W30_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar
)
-
[
HRNet_W32_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar
)
-
[
HRNet_W32_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar
)
-
[
HRNet_W40_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar
)
-
[
HRNet_W40_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar
)
-
[
HRNet_W44_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar
)
-
[
HRNet_W44_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar
)
-
[
HRNet_W48_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar
)
-
[
HRNet_W48_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar
)
-
[
HRNet_W48_C_ssld
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_ssld_pretrained.tar
)
-
[
HRNet_W64_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar
)
-
[
HRNet_W64_C
](
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar
)
...
...
docs/zh_CN/update_history.md
浏览文件 @
f9413d1a
# 更新日志
# 更新日志
-
2020.09.17
*
添加HRNet_W48_C_ssld模型,在ImageNet上Top-1 Acc可达0.836;添加ResNet34_vd_ssld模型,在ImageNet上Top-1 Acc可达0.797。
*
2020.09.07
*
2020.09.07
*
添加HRNet_W18_C_ssld模型,在ImageNet上Top-1 Acc可达0.81162;添加MobileNetV3_small_x0_35_ssld模型,在ImageNet上Top-1 Acc可达0.5555。
*
添加HRNet_W18_C_ssld模型,在ImageNet上Top-1 Acc可达0.81162;添加MobileNetV3_small_x0_35_ssld模型,在ImageNet上Top-1 Acc可达0.5555。
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录