Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
f642931e
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f642931e
编写于
6月 13, 2022
作者:
G
gaotingquan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
docs: fix
上级
a3a3da21
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
2 addition
and
2 deletion
+2
-2
docs/zh_CN/PULC/PULC_vehicle_attribute.md
docs/zh_CN/PULC/PULC_vehicle_attribute.md
+2
-2
未找到文件。
docs/zh_CN/PULC/PULC_vehicle_attribute.md
浏览文件 @
f642931e
...
...
@@ -55,7 +55,7 @@
| PPLCNet_x1_0 | 90.59 | 2.36 | 7.2 | 使用SSLD预训练模型+EDA策略|
|
<b>
PPLCNet_x1_0
<b>
|
<b>
90.81
<b>
|
<b>
2.36
<b>
|
<b>
8.2
<b>
| 使用SSLD预训练模型+EDA策略+SKL-UGI知识蒸馏策略|
从表中可以看出,backbone 为 Res2Net200_vd_26w_4s 时精度较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是精度下降明显。将 backbone 替换为 PPLCNet_x1_0 时,精度提升 2
.16%,同时速度也提升 23% 左右。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 0.5%,进一步地,当融合EDA策略后,精度可以再提升 0.52%,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.23%。此时,PPLCNet_x1_0 的精度与 Res2Net200_vd_26w_4s 仅相差0.55%,但是速度快32
倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
从表中可以看出,backbone 为 Res2Net200_vd_26w_4s 时精度较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是精度下降明显。将 backbone 替换为 PPLCNet_x1_0 时,精度提升 2
个百分点,同时速度也提升 23% 左右。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 0.5 个百分点,进一步地,当融合EDA策略后,精度可以再提升 0.52 个百分点,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.23 个百分点。此时,PPLCNet_x1_0 的精度与 Res2Net200_vd_26w_4s 仅相差 0.55 个百分点,但是速度快 32
倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
**备注:**
...
...
@@ -337,7 +337,7 @@ python3 -m paddle.distributed.launch \
## 5. 超参搜索
在
[
3.
2 节
](
#3.2
)
和
[
4.1 节
](
#4.1
)
所使用的超参数是根据 PaddleClas 提供的
`SHAS 超参数搜索策略`
搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考
[
SHAS 超参数搜索策略
](
PULC_train.md#4-超参搜索
)
来获得更好的训练超参数。
在
[
3.
3 节
](
#3.3
)
和
[
4.1 节
](
#4.1
)
所使用的超参数是根据 PaddleClas 提供的
`SHAS 超参数搜索策略`
搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考
[
SHAS 超参数搜索策略
](
PULC_train.md#4-超参搜索
)
来获得更好的训练超参数。
**备注:**
此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录