未验证 提交 f64188e4 编写于 作者: L lilithzhou 提交者: GitHub

Merge branch 'PaddlePaddle:develop' into develop

......@@ -8,7 +8,7 @@
**近期更新**
- 2021.07.08、07.27 添加26个[FAQ](docs/zh_CN/faq_series/faq_2021_s2.md)
- 2021.08.11 更新7个[FAQ](docs/zh_CN/faq_series/faq_2021_s2.md)
- 2021.06.29 添加Swin-transformer系列模型,ImageNet1k数据集上Top1 acc最高精度可达87.2%;支持训练预测评估与whl包部署,预训练模型可以从[这里](docs/zh_CN/models/models_intro.md)下载。
- 2021.06.22,23,24 PaddleClas官方研发团队带来技术深入解读三日直播课。课程回放:[https://aistudio.baidu.com/aistudio/course/introduce/24519](https://aistudio.baidu.com/aistudio/course/introduce/24519)
- 2021.06.16 PaddleClas v2.2版本升级,集成Metric learning,向量检索等组件。新增商品识别、动漫人物识别、车辆识别和logo识别等4个图像识别应用。新增LeViT、Twins、TNT、DLA、HarDNet、RedNet系列30个预训练模型。
......
......@@ -167,4 +167,22 @@ python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml
更多模型导出教程,请参考:[EXPORT_MODEL](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/deploy/EXPORT_MODEL.md)
导出模型之后,在主体检测与识别任务中,就可以将检测模型的路径更改为该inference模型路径,完成预测。图像识别快速体验可以参考:[图像识别快速开始教程](../tutorials/quick_start_recognition.md)
最终,目录`inference/ppyolov2_r50vd_dcn_365e_coco`中包含`inference.pdiparams`, `inference.pdiparams.info` 以及 `inference.pdmodel` 文件,其中`inference.pdiparams`为保存的inference模型权重文件,`inference.pdmodel`为保存的inference模型结构文件。
导出模型之后,在主体检测与识别任务中,就可以将检测模型的路径更改为该inference模型路径,完成预测。
以商品识别为例,其配置文件为[inference_product.yaml](../../../deploy/configs/inference_product.yaml),修改其中的`Global.det_inference_model_dir`字段为导出的主体检测inference模型目录,参考[图像识别快速开始教程](../tutorials/quick_start_recognition.md),即可完成商品检测与识别过程。
### FAQ
#### Q:可以使用其他的主体检测模型结构吗?
* A:可以的,但是目前的检测预处理过程仅适配yolo系列的预处理,因此在使用的时候,建议优先使用yolo系列的模型进行训练,如果希望使用faster rcnn等其他系列的模型,需要按照PaddleDetection的数据预处理,修改下预处理逻辑,这块如果您有需求或者有问题的话,欢迎提issue或者在群里反馈。
#### Q:可以修改主体检测的预测尺度吗?
* A:可以的,但是需要注意2个地方
* PaddleClas中提供的主体检测模型是基于640x640的分辨率去训练的,因此预测的时候也是默认使用640x640的分辨率进行预测,使用其他分辨率预测的话,精度会有所降低。
* 在模型导出的时候,建议也修改下模型导出的分辨率,保持模型导出、模型预测的分辨率一致。
......@@ -244,7 +244,7 @@ python3 python/predict_cls.py \
-c configs/inference_cls.yaml \
-o Global.infer_imgs=../dataset/flowers102/jpg/image_00001.jpg \
-o Global.inference_model_dir=../inference/ \
-o PostProcess.class_id_map_file=None
-o PostProcess.Topk.class_id_map_file=None
其中:
......
......@@ -128,7 +128,7 @@ python3 -m paddle.distributed.launch \
PaddleClas包含了自研的SSLD知识蒸馏方案,具体的内容可以参考[知识蒸馏章节](../advanced_tutorials/distillation/distillation.md), 本小节将尝试使用知识蒸馏技术对MobileNetV3_large_x1_0模型进行训练,使用`2.1.2小节`训练得到的ResNet50_vd模型作为蒸馏所用的教师模型,首先将`2.1.2小节`训练得到的ResNet50_vd模型保存到指定目录,脚本如下。
```shell
mkdir pretrained
mkdir pretrained
cp -r output_CIFAR/ResNet50_vd/best_model.pdparams ./pretrained/
```
......@@ -256,5 +256,5 @@ PreProcess:
python3 python/predict_cls.py \
-c configs/inference_cls.yaml \
-o Global.infer_imgs=../dataset/CIFAR100/test/0/0001.png \
-o PostProcess.class_id_map_file=None
-o PostProcess.Topk.class_id_map_file=None
```
......@@ -12,15 +12,9 @@ class Identity(nn.Layer):
class TheseusLayer(nn.Layer):
def __init__(self, *args, return_patterns=None, **kwargs):
def __init__(self, *args, **kwargs):
super(TheseusLayer, self).__init__()
self.res_dict = None
if return_patterns is not None:
self._update_res(return_patterns)
def forward(self, *input, res_dict=None, **kwargs):
if res_dict is not None:
self.res_dict = res_dict
self.res_dict = {}
# stop doesn't work when stop layer has a parallel branch.
def stop_after(self, stop_layer_name: str):
......@@ -38,33 +32,43 @@ class TheseusLayer(nn.Layer):
stop_layer_name)
return after_stop
def _update_res(self, return_layers):
def update_res(self, return_patterns):
if not return_patterns or isinstance(self, WrapLayer):
return
for layer_i in self._sub_layers:
layer_name = self._sub_layers[layer_i].full_name()
if isinstance(self._sub_layers[layer_i], (nn.Sequential, nn.LayerList)):
self._sub_layers[layer_i] = wrap_theseus(self._sub_layers[layer_i])
self._sub_layers[layer_i].res_dict = self.res_dict
self._sub_layers[layer_i].update_res(return_patterns)
else:
for return_pattern in return_patterns:
if re.match(return_pattern, layer_name):
if not isinstance(self._sub_layers[layer_i], TheseusLayer):
self._sub_layers[layer_i] = wrap_theseus(self._sub_layers[layer_i])
self._sub_layers[layer_i].register_forward_post_hook(
self._sub_layers[layer_i]._save_sub_res_hook)
self._sub_layers[layer_i].res_dict = self.res_dict
if isinstance(self._sub_layers[layer_i], TheseusLayer):
self._sub_layers[layer_i].res_dict = self.res_dict
self._sub_layers[layer_i].update_res(return_patterns)
def _save_sub_res_hook(self, layer, input, output):
self.res_dict[layer.full_name()] = output
def replace_sub(self, layer_name_pattern, replace_function, recursive=True):
for layer_i in self._sub_layers:
layer_name = self._sub_layers[layer_i].full_name()
for return_pattern in return_layers:
if return_layers is not None and re.match(return_pattern,
layer_name):
self._sub_layers[layer_i].register_forward_post_hook(
self._save_sub_res_hook)
def replace_sub(self, layer_name_pattern, replace_function,
recursive=True):
for k in self._sub_layers.keys():
layer_name = self._sub_layers[k].full_name()
if re.match(layer_name_pattern, layer_name):
self._sub_layers[k] = replace_function(self._sub_layers[k])
self._sub_layers[layer_i] = replace_function(self._sub_layers[layer_i])
if recursive:
if isinstance(self._sub_layers[k], TheseusLayer):
self._sub_layers[k].replace_sub(
if isinstance(self._sub_layers[layer_i], TheseusLayer):
self._sub_layers[layer_i].replace_sub(
layer_name_pattern, replace_function, recursive)
elif isinstance(self._sub_layers[k],
nn.Sequential) or isinstance(
self._sub_layers[k], nn.LayerList):
for kk in self._sub_layers[k]._sub_layers.keys():
self._sub_layers[k]._sub_layers[kk].replace_sub(
elif isinstance(self._sub_layers[layer_i], (nn.Sequential, nn.LayerList)):
for layer_j in self._sub_layers[layer_i]._sub_layers:
self._sub_layers[layer_i]._sub_layers[layer_j].replace_sub(
layer_name_pattern, replace_function, recursive)
else:
pass
'''
example of replace function:
......@@ -78,3 +82,40 @@ class TheseusLayer(nn.Layer):
return new_conv
'''
class WrapLayer(TheseusLayer):
def __init__(self, sub_layer):
super(WrapLayer, self).__init__()
self.sub_layer = sub_layer
self.name = sub_layer.full_name()
def full_name(self):
return self.name
def forward(self, *inputs, **kwargs):
return self.sub_layer(*inputs, **kwargs)
def update_res(self, return_patterns):
if not return_patterns or not isinstance(self.sub_layer, (nn.Sequential, nn.LayerList)):
return
for layer_i in self.sub_layer._sub_layers:
if isinstance(self.sub_layer._sub_layers[layer_i], (nn.Sequential, nn.LayerList)):
self.sub_layer._sub_layers[layer_i] = wrap_theseus(self.sub_layer._sub_layers[layer_i])
self.sub_layer._sub_layers[layer_i].res_dict = self.res_dict
self.sub_layer._sub_layers[layer_i].update_res(return_patterns)
layer_name = self.sub_layer._sub_layers[layer_i].full_name()
for return_pattern in return_patterns:
if re.match(return_pattern, layer_name):
self.sub_layer._sub_layers[layer_i].res_dict = self.res_dict
self.sub_layer._sub_layers[layer_i].register_forward_post_hook(
self._sub_layers[layer_i]._save_sub_res_hook)
if isinstance(self.sub_layer._sub_layers[layer_i], TheseusLayer):
self.sub_layer._sub_layers[layer_i].update_res(return_patterns)
def wrap_theseus(sub_layer):
wrapped_layer = WrapLayer(sub_layer)
return wrapped_layer
......@@ -111,7 +111,7 @@ class VGGNet(TheseusLayer):
model: nn.Layer. Specific VGG model depends on args.
"""
def __init__(self, config, stop_grad_layers=0, class_num=1000):
def __init__(self, config, stop_grad_layers=0, class_num=1000, return_patterns=None):
super().__init__()
self.stop_grad_layers = stop_grad_layers
......@@ -138,7 +138,7 @@ class VGGNet(TheseusLayer):
self.fc2 = Linear(4096, 4096)
self.fc3 = Linear(4096, class_num)
def forward(self, inputs):
def forward(self, inputs, res_dict=None):
x = self.conv_block_1(inputs)
x = self.conv_block_2(x)
x = self.conv_block_3(x)
......@@ -152,6 +152,9 @@ class VGGNet(TheseusLayer):
x = self.relu(x)
x = self.drop(x)
x = self.fc3(x)
if self.res_dict and res_dict is not None:
for res_key in list(self.res_dict):
res_dict[res_key] = self.res_dict.pop(res_key)
return x
......
......@@ -12,7 +12,7 @@ MODEL_URLS = {
"ResNeXt101_32x8d_wsl":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x8d_wsl_pretrained.pdparams",
"ResNeXt101_32x16d_wsl":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x816_wsl_pretrained.pdparams",
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x16_wsl_pretrained.pdparams",
"ResNeXt101_32x32d_wsl":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x32d_wsl_pretrained.pdparams",
"ResNeXt101_32x48d_wsl":
......
......@@ -24,6 +24,7 @@ Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
......@@ -35,9 +36,10 @@ Optimizer:
lr:
name: Cosine
learning_rate: 0.8
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.0004
coeff: 0.00004
# data loader for train and eval
......
......@@ -24,6 +24,7 @@ Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
......@@ -35,9 +36,10 @@ Optimizer:
lr:
name: Cosine
learning_rate: 0.8
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.0004
coeff: 0.00004
# data loader for train and eval
......
......@@ -24,6 +24,7 @@ Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
......@@ -35,9 +36,10 @@ Optimizer:
lr:
name: Cosine
learning_rate: 0.8
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.0004
coeff: 0.00004
# data loader for train and eval
......
......@@ -41,7 +41,7 @@ Optimizer:
values: [0.1, 0.01, 0.001, 0.0001]
regularizer:
name: 'L2'
coeff: 0.0003
coeff: 0.00003
# data loader for train and eval
......
......@@ -39,7 +39,7 @@ Optimizer:
values: [0.1, 0.01, 0.001, 0.0001]
regularizer:
name: 'L2'
coeff: 0.0003
coeff: 0.00003
# data loader for train and eval
......
......@@ -39,7 +39,7 @@ Optimizer:
values: [0.1, 0.01, 0.001, 0.0001]
regularizer:
name: 'L2'
coeff: 0.0003
coeff: 0.00003
# data loader for train and eval
......
......@@ -39,7 +39,7 @@ Optimizer:
values: [0.1, 0.01, 0.001, 0.0001]
regularizer:
name: 'L2'
coeff: 0.0003
coeff: 0.00003
# data loader for train and eval
......
......@@ -39,7 +39,7 @@ Optimizer:
learning_rate: 0.045
regularizer:
name: 'L2'
coeff: 0.0004
coeff: 0.00004
# data loader for train and eval
......
......@@ -37,7 +37,7 @@ Optimizer:
learning_rate: 0.045
regularizer:
name: 'L2'
coeff: 0.0003
coeff: 0.00003
# data loader for train and eval
......
......@@ -37,7 +37,7 @@ Optimizer:
learning_rate: 0.045
regularizer:
name: 'L2'
coeff: 0.0003
coeff: 0.00003
# data loader for train and eval
......
......@@ -37,7 +37,7 @@ Optimizer:
learning_rate: 0.045
regularizer:
name: 'L2'
coeff: 0.0004
coeff: 0.00004
# data loader for train and eval
......
......@@ -37,7 +37,7 @@ Optimizer:
learning_rate: 0.045
regularizer:
name: 'L2'
coeff: 0.0004
coeff: 0.00004
# data loader for train and eval
......
......@@ -37,7 +37,7 @@ Optimizer:
learning_rate: 0.045
regularizer:
name: 'L2'
coeff: 0.0004
coeff: 0.00004
# data loader for train and eval
......
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 240
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
# model architecture
Arch:
name: ShuffleNetV2_swish
class_num: 1000
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.5
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.00004
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 256
drop_last: False
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/whl/demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]
......@@ -38,7 +38,7 @@ Optimizer:
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.0003
coeff: 0.00003
# data loader for train and eval
......
......@@ -38,7 +38,7 @@ Optimizer:
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.0003
coeff: 0.00003
# data loader for train and eval
......
......@@ -38,7 +38,7 @@ Optimizer:
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.0003
coeff: 0.00003
# data loader for train and eval
......
......@@ -38,7 +38,7 @@ Optimizer:
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.0004
coeff: 0.00004
# data loader for train and eval
......
......@@ -38,7 +38,7 @@ Optimizer:
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.0004
coeff: 0.00004
# data loader for train and eval
......
......@@ -38,7 +38,7 @@ Optimizer:
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.0004
coeff: 0.00004
# data loader for train and eval
......
......@@ -588,7 +588,7 @@ class Trainer(object):
if len(batch) == 3:
has_unique_id = True
batch[2] = batch[2].reshape([-1, 1]).astype("int64")
out = self.model(batch[0], batch[1])
out = self.forward(batch)
batch_feas = out["features"]
# do norm
......@@ -653,7 +653,7 @@ class Trainer(object):
image_file_list.append(image_file)
if len(batch_data) >= batch_size or idx == len(image_list) - 1:
batch_tensor = paddle.to_tensor(batch_data)
out = self.model(batch_tensor)
out = self.forward([batch_tensor])
if isinstance(out, list):
out = out[0]
result = postprocess_func(out, image_file_list)
......
......@@ -185,7 +185,7 @@ function func_inference(){
elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
for use_trt in ${use_trt_list[*]}; do
for precision in ${precision_list[*]}; do
if [ ${precision} = "False" ] && [ ${use_trt} = "False" ]; then
if [ ${precision} = "True" ] && [ ${use_trt} = "False" ]; then
continue
fi
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册