Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
f2cef156
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f2cef156
编写于
4月 15, 2020
作者:
D
dyning
提交者:
GitHub
4月 15, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #32 from cuicheng01/master
update dataaug in README
上级
200af90a
e5d6a7f9
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
1 addition
and
1 deletion
+1
-1
README.md
README.md
+1
-1
未找到文件。
README.md
浏览文件 @
f2cef156
...
...
@@ -54,7 +54,7 @@ src="docs/images/distillation/ppcls_distillation_v1.png" width="700">
### 数据增广
在图像分类任务中,图像数据的增广是一种常用的正则化方法,可以有效提升图像分类的效果,尤其对于数据量不足或者模型网络较大的场景。PaddleClas支持了最新的8种数据增广算法的复现和在统一实验环境下的效果评估,
如下图所示
。每种数据增广方法的详细介绍、对比的实验环境以及使用正在持续更新中。
在图像分类任务中,图像数据的增广是一种常用的正则化方法,可以有效提升图像分类的效果,尤其对于数据量不足或者模型网络较大的场景。PaddleClas支持了最新的8种数据增广算法的复现和在统一实验环境下的效果评估,
下图展示了不同数据增广方式在ResNet50上的表现
。每种数据增广方法的详细介绍、对比的实验环境以及使用正在持续更新中。
<div
align=
"center"
>
<img
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录