提交 efdcf7c8 编写于 作者: L lubin

make code short;modify cifar10 data path

上级 4ea2f449
...@@ -63,8 +63,8 @@ DataLoader: ...@@ -63,8 +63,8 @@ DataLoader:
Train: Train:
dataset: dataset:
name: ImageNetDataset name: ImageNetDataset
image_root: ./dataset/ image_root: ./dataset/CIFAR10/
cls_label_path: ./dataset/train.txt cls_label_path: ./dataset/CIFAR10/train_list.txt
transform_ops: transform_ops:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
...@@ -88,8 +88,8 @@ DataLoader: ...@@ -88,8 +88,8 @@ DataLoader:
Query: Query:
dataset: dataset:
name: ImageNetDataset name: ImageNetDataset
image_root: ./dataset/ image_root: ./dataset/CIFAR10/
cls_label_path: ./dataset/test.txt cls_label_path: ./dataset/CIFAR10/test_list.txt
transform_ops: transform_ops:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
...@@ -112,8 +112,8 @@ DataLoader: ...@@ -112,8 +112,8 @@ DataLoader:
Gallery: Gallery:
dataset: dataset:
name: ImageNetDataset name: ImageNetDataset
image_root: ./dataset/ image_root: ./dataset/CIFAR10/
cls_label_path: ./dataset/database.txt cls_label_path: ./dataset/CIFAR10/train_list.txt
transform_ops: transform_ops:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
......
...@@ -64,8 +64,8 @@ DataLoader: ...@@ -64,8 +64,8 @@ DataLoader:
Train: Train:
dataset: dataset:
name: ImageNetDataset name: ImageNetDataset
image_root: ./dataset/ image_root: ./dataset/CIFAR10/
cls_label_path: ./dataset/train.txt cls_label_path: ./dataset/CIFAR10/train_list.txt
transform_ops: transform_ops:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
...@@ -89,8 +89,8 @@ DataLoader: ...@@ -89,8 +89,8 @@ DataLoader:
Query: Query:
dataset: dataset:
name: ImageNetDataset name: ImageNetDataset
image_root: ./dataset/ image_root: ./dataset/CIFAR10/
cls_label_path: ./dataset/test.txt cls_label_path: ./dataset/CIFAR10/test_list.txt
transform_ops: transform_ops:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
...@@ -113,8 +113,8 @@ DataLoader: ...@@ -113,8 +113,8 @@ DataLoader:
Gallery: Gallery:
dataset: dataset:
name: ImageNetDataset name: ImageNetDataset
image_root: ./dataset/ image_root: ./dataset/CIFAR10/
cls_label_path: ./dataset/database.txt cls_label_path: ./dataset/CIFAR10/train_list.txt
transform_ops: transform_ops:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
......
...@@ -60,8 +60,8 @@ DataLoader: ...@@ -60,8 +60,8 @@ DataLoader:
Train: Train:
dataset: dataset:
name: ImageNetDataset name: ImageNetDataset
image_root: ./dataset/ image_root: ./dataset/CIFAR10/
cls_label_path: ./dataset/train.txt cls_label_path: ./dataset/CIFAR10/train_list.txt
transform_ops: transform_ops:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
...@@ -85,8 +85,8 @@ DataLoader: ...@@ -85,8 +85,8 @@ DataLoader:
Query: Query:
dataset: dataset:
name: ImageNetDataset name: ImageNetDataset
image_root: ./dataset/ image_root: ./dataset/CIFAR10/
cls_label_path: ./dataset/test.txt cls_label_path: ./dataset/CIFAR10/test_list.txt
transform_ops: transform_ops:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
...@@ -109,8 +109,8 @@ DataLoader: ...@@ -109,8 +109,8 @@ DataLoader:
Gallery: Gallery:
dataset: dataset:
name: ImageNetDataset name: ImageNetDataset
image_root: ./dataset/ image_root: ./dataset/CIFAR10/
cls_label_path: ./dataset/database.txt cls_label_path: ./dataset/CIFAR10/train_list.txt
transform_ops: transform_ops:
- DecodeImage: - DecodeImage:
to_rgb: True to_rgb: True
......
...@@ -28,34 +28,35 @@ class DSHSDLoss(nn.Layer): ...@@ -28,34 +28,35 @@ class DSHSDLoss(nn.Layer):
self.multi_label = multi_label self.multi_label = multi_label
def forward(self, input, label): def forward(self, input, label):
feature = input["features"] features = input["features"]
logits = input["logits"] logits = input["logits"]
dist = paddle.sum(paddle.square( features_temp1 = paddle.unsqueeze(features, 1)
(paddle.unsqueeze(feature, 1) - paddle.unsqueeze(feature, 0))), features_temp2 = paddle.unsqueeze(features, 0)
axis=2) dist = features_temp1 - features_temp2
dist = paddle.square(dist)
dist = paddle.sum(dist, axis=2)
# label to ont-hot
n_class = logits.shape[1] n_class = logits.shape[1]
label = paddle.nn.functional.one_hot( labels = paddle.nn.functional.one_hot(label, n_class)
label, n_class).astype("float32").squeeze() labels = labels.squeeze().astype("float32")
s = (paddle.matmul( s = paddle.matmul(labels, labels, transpose_y=True)
label, label, transpose_y=True) == 0).astype("float32") s = (s == 0).astype("float32")
margin = 2 * feature.shape[1] margin = 2 * features.shape[1]
Ld = (1 - s) / 2 * dist + s / 2 * (margin - dist).clip(min=0) Ld = (1 - s) / 2 * dist + s / 2 * (margin - dist).clip(min=0)
Ld = Ld.mean() Ld = Ld.mean()
if self.multi_label: if self.multi_label:
# multiple labels classification loss Lc_temp = (1 + (-logits).exp()).log()
Lc = (logits - label * logits + ( Lc = (logits - labels * logits + Lc_temp).sum(axis=1)
(1 + (-logits).exp()).log())).sum(axis=1).mean()
else: else:
# single labels classification loss probs = paddle.nn.functional.softmax(logits)
Lc = (-paddle.nn.functional.softmax(logits).log() * label).sum( Lc = (-probs.log() * labels).sum(axis=1)
axis=1).mean() Lc = Lc.mean()
return {"dshsdloss": Lc + Ld * self.alpha} loss = Lc + Ld * self.alpha
return {"dshsdloss": loss}
class LCDSHLoss(nn.Layer): class LCDSHLoss(nn.Layer):
...@@ -69,24 +70,30 @@ class LCDSHLoss(nn.Layer): ...@@ -69,24 +70,30 @@ class LCDSHLoss(nn.Layer):
self.n_class = n_class self.n_class = n_class
def forward(self, input, label): def forward(self, input, label):
feature = input["features"] features = input["features"]
labels = paddle.nn.functional.one_hot(label, self.n_class)
labels = labels.squeeze().astype("float32")
label = paddle.nn.functional.one_hot( s = paddle.matmul(labels, labels, transpose_y=True)
label, self.n_class).astype("float32").squeeze() s = 2 * (s > 0).astype("float32") - 1
s = 2 * (paddle.matmul(
label, label, transpose_y=True) > 0).astype("float32") - 1
inner_product = paddle.matmul(feature, feature, transpose_y=True) * 0.5
inner_product = paddle.matmul(features, features, transpose_y=True)
inner_product = inner_product * 0.5
inner_product = inner_product.clip(min=-50, max=50) inner_product = inner_product.clip(min=-50, max=50)
L1 = paddle.log(1 + paddle.exp(-s * inner_product)).mean() L1 = paddle.log(1 + paddle.exp(-s * inner_product))
L1 = L1.mean()
binary_features = features.sign()
b = feature.sign() inner_product_ = paddle.matmul(
inner_product_ = paddle.matmul(b, b, transpose_y=True) * 0.5 binary_features, binary_features, transpose_y=True)
inner_product_ = inner_product_ * 0.5
sigmoid = paddle.nn.Sigmoid() sigmoid = paddle.nn.Sigmoid()
L2 = (sigmoid(inner_product) - sigmoid(inner_product_)).pow(2).mean() L2 = (sigmoid(inner_product) - sigmoid(inner_product_)).pow(2)
L2 = L2.mean()
return {"lcdshloss": L1 + self._lambda * L2} loss = L1 + self._lambda * L2
return {"lcdshloss": loss}
class DCHLoss(paddle.nn.Layer): class DCHLoss(paddle.nn.Layer):
...@@ -111,14 +118,15 @@ class DCHLoss(paddle.nn.Layer): ...@@ -111,14 +118,15 @@ class DCHLoss(paddle.nn.Layer):
len_j = feature_j.pow(2).sum(axis=1, keepdim=True).pow(0.5) len_j = feature_j.pow(2).sum(axis=1, keepdim=True).pow(0.5)
norm = paddle.matmul(len_i, len_j, transpose_y=True) norm = paddle.matmul(len_i, len_j, transpose_y=True)
cos = inner_product / norm.clip(min=0.0001) cos = inner_product / norm.clip(min=0.0001)
return (1 - cos.clip(max=0.99)) * K / 2 dist = (1 - cos.clip(max=0.99)) * K / 2
return dist
def forward(self, input, label): def forward(self, input, label):
u = input["features"] features = input["features"]
y = paddle.nn.functional.one_hot( labels = paddle.nn.functional.one_hot(label, self.n_class)
label, self.n_class).astype("float32").squeeze() labels = labels.squeeze().astype("float32")
s = paddle.matmul(y, y, transpose_y=True).astype("float32") s = paddle.matmul(labels, labels, transpose_y=True).astype("float32")
if (1 - s).sum() != 0 and s.sum() != 0: if (1 - s).sum() != 0 and s.sum() != 0:
positive_w = s * s.numel() / s.sum() positive_w = s * s.numel() / s.sum()
negative_w = (1 - s) * s.numel() / (1 - s).sum() negative_w = (1 - s) * s.numel() / (1 - s).sum()
...@@ -126,15 +134,13 @@ class DCHLoss(paddle.nn.Layer): ...@@ -126,15 +134,13 @@ class DCHLoss(paddle.nn.Layer):
else: else:
w = 1 w = 1
d_hi_hj = self.distance(u, u) dist_matric = self.distance(features, features)
cauchy_loss = w * (s * paddle.log(dist_matric / self.gamma) +
paddle.log(1 + self.gamma / dist_matric))
cauchy_loss = w * (s * paddle.log(d_hi_hj / self.gamma) + all_one = paddle.ones_like(features, dtype="float32")
paddle.log(1 + self.gamma / d_hi_hj)) dist_to_one = self.distance(features.abs(), all_one)
quantization_loss = paddle.log(1 + dist_to_one / self.gamma)
all_one = paddle.ones_like(u, dtype="float32")
quantization_loss = paddle.log(1 + self.distance(u.abs(), all_one) /
self.gamma)
loss = cauchy_loss.mean() + self._lambda * quantization_loss.mean() loss = cauchy_loss.mean() + self._lambda * quantization_loss.mean()
return {"dchloss": loss} return {"dchloss": loss}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册