未验证 提交 ef99fcfc 编写于 作者: C cuicheng01 提交者: GitHub

Merge pull request #1862 from cuicheng01/release/2.3

[cherry-pick]update quickstart docs
......@@ -75,6 +75,24 @@ python3 -m paddle.distributed.launch \
The highest accuracy of the validation set is around 0.415.
Here, multiple GPUs are used for training. If only one GPU is used, please specify the GPU with the `CUDA_VISIBLE_DEVICES` setting, and specify the GPU with the `--gpus` setting, the same below. For example, to train with only GPU 0:
```shell
export CUDA_VISIBLE_DEVICES=0
python3 -m paddle.distributed.launch \
--gpus="0" \
tools/train.py \
-c ./ppcls/configs/quick_start/professional/ResNet50_vd_CIFAR100.yaml \
-o Global.output_dir="output_CIFAR" \
-o Optimizer.lr.learning_rate=0.01
```
* **Notice**:
* The GPUs specified in `--gpus` can be a subset of the GPUs specified in `CUDA_VISIBLE_DEVICES`.
* Since the initial learning rate and batch-size need to maintain a linear relationship, when training is switched from 4 GPUs to 1 GPU, the total batch-size is reduced to 1/4 of the original, and the learning rate also needs to be reduced to 1/4 of the original, so changed the default learning rate from 0.04 to 0.01.
<a name="2.1.2"></a>
......
......@@ -75,6 +75,23 @@ python3 -m paddle.distributed.launch \
验证集的最高准确率为 0.415 左右。
此处使用了多个 GPU 训练,如果只使用一个 GPU,请将 `CUDA_VISIBLE_DEVICES` 设置指定 GPU,`--gpus`设置指定 GPU,下同。例如,只使用 0 号 GPU 训练:
```shell
export CUDA_VISIBLE_DEVICES=0
python3 -m paddle.distributed.launch \
--gpus="0" \
tools/train.py \
-c ./ppcls/configs/quick_start/professional/ResNet50_vd_CIFAR100.yaml \
-o Global.output_dir="output_CIFAR" \
-o Optimizer.lr.learning_rate=0.01
```
* **注意**:
* `--gpus`中指定的 GPU 可以是 `CUDA_VISIBLE_DEVICES` 指定的 GPU 的子集。
* 由于初始学习率和 batch-size 需要保持线性关系,所以训练从 4 个 GPU 切换到 1 个 GPU 训练时,总 batch-size 缩减为原来的 1/4,学习率也需要缩减为原来的 1/4,所以改变了默认的学习率从 0.04 到 0.01。
<a name="2.1.2"></a>
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册