未验证 提交 eddba911 编写于 作者: T Tingquan Gao 提交者: GitHub

modify some default hyperparams to adapt to fine-tune downstream tasks (#2921)

1. unset EMA because of the relatively small size of most downstream dataset;
2. use mean and std of IMN.
上级 1f8a830b
......@@ -49,6 +49,20 @@ output = model(inputs) # the output of model embeding
| EVA | EVA_vit_giant_patch14 | 1010M | 1408 | ImageNet-21k, CC12M, CC2M, Object365,COCO, ADE | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/EVA_vit_giant_patch14.pdparams) |
| CAE | CAE_vit_base_patch16_224 | 85M | 768 | ImageNet-1k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CAE_vit_base_patch16_224.pdparams) |
**备注:** PaddleClas 提供的 CLIP 系列模型在 ImageNet1k 数据集 fine-tune 的配置([CLIP_vit_base_patch14_224](ppcls/configs/CLIP/CLIP_vit_base_patch16_224_finetune.yaml)[CLIP_vit_large_patch14_224](ppcls/configs/CLIP/CLIP_vit_large_patch16_224_finetune.yaml))中:
* 默认未使用 `EMA`,如需使用,请自行修改配置文件增加字段:
```yaml
EMA:
decay: 0.9999
```
* 数据预处理中,`NormalizeImage` 默认使用 ImageNet1k 数据集的 `mean``std` 参数(`mean``[0.485, 0.456, 0.406]``std``[0.229, 0.224, 0.225]`),如需使用 LAION 数据集相应参数,请自行修改相应字段:
```yaml
- NormalizeImage:
scale: 1.0/255.0
mean: [0.48145466, 0.4578275, 0.40821073]
std: [0.26862954, 0.26130258, 0.27577711]
```
## 4. 参考文献
1. [MoCo v3: An Empirical Study of Training Self-Supervised Vision Transformers](https://arxiv.org/pdf/2104.02057.pdf)
......
......@@ -21,10 +21,6 @@ AMP:
# O1: mixed fp16
level: O1
# model ema
EMA:
decay: 0.9999
# model architecture
Arch:
name: CLIP_vit_base_patch16_224
......@@ -81,8 +77,8 @@ DataLoader:
img_size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.48145466, 0.4578275, 0.40821073]
std: [0.26862954, 0.26130258, 0.27577711]
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.25
......@@ -118,8 +114,8 @@ DataLoader:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.48145466, 0.4578275, 0.40821073]
std: [0.26862954, 0.26130258, 0.27577711]
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
......@@ -143,8 +139,8 @@ Infer:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.5, 0.5, 0.5]
std: [0.5, 0.5, 0.5]
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
......
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 10
eval_during_train: True
eval_interval: 1
epochs: 50
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
# mixed precision training
AMP:
scale_loss: 128.0
use_dynamic_loss_scaling: True
# O1: mixed fp16
level: O1
# model architecture
Arch:
name: CLIP_vit_large_patch14_224
class_num: 1000
return_embed: False
pretrained: True
head_init_scale: 0.001
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: AdamWDL
beta1: 0.9
beta2: 0.999
epsilon: 1e-8
weight_decay: 0.05
layerwise_decay: 0.6
filter_bias_and_bn: True
lr:
name: Cosine
learning_rate: 0.0003
eta_min: 1e-6
warmup_epoch: 10
warmup_start_lr: 1e-6
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 224
interpolation: bicubic
backend: pil
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
config_str: rand-m9-mstd0.5-inc1
interpolation: bicubic
img_size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.25
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: pixel
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: True
shuffle: True
loader:
num_workers: 16
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 224
interpolation: bicubic
backend: pil
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 8
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册