Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
eae30201
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
eae30201
编写于
6月 13, 2022
作者:
W
weishengyu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
dbg
上级
a3c154fa
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
3 addition
and
3 deletion
+3
-3
docs/zh_CN/PULC/PULC_car_exists.md
docs/zh_CN/PULC/PULC_car_exists.md
+3
-3
未找到文件。
docs/zh_CN/PULC/PULC_car_exists.md
浏览文件 @
eae30201
...
@@ -48,12 +48,12 @@
...
@@ -48,12 +48,12 @@
|-------|----------------|----------|---------------|---------------|
|-------|----------------|----------|---------------|---------------|
| SwinTranformer_tiny | 97.71 | 95.30 | 107 | 使用 ImageNet 预训练模型 |
| SwinTranformer_tiny | 97.71 | 95.30 | 107 | 使用 ImageNet 预训练模型 |
| MobileNetV3_small_x0_35 | 81.23 | 2.85 | 1.6 | 使用 ImageNet 预训练模型 |
| MobileNetV3_small_x0_35 | 81.23 | 2.85 | 1.6 | 使用 ImageNet 预训练模型 |
| PPLCNet_x1_0 |
81.23
| 2.12 | 6.5 | 使用 ImageNet 预训练模型 |
| PPLCNet_x1_0 |
94.72
| 2.12 | 6.5 | 使用 ImageNet 预训练模型 |
| PPLCNet_x1_0 | 95.48 | 2.12 | 6.5 | 使用 SSLD 预训练模型 |
| PPLCNet_x1_0 | 95.48 | 2.12 | 6.5 | 使用 SSLD 预训练模型 |
| PPLCNet_x1_0 | 95.48 | 2.12 | 6.5 | 使用 SSLD 预训练模型+EDA 策略|
| PPLCNet_x1_0 | 95.48 | 2.12 | 6.5 | 使用 SSLD 预训练模型+EDA 策略|
|
<b>
PPLCNet_x1_0
<b>
|
<b>
95.72
<b>
|
<b>
2.12
<b>
|
<b>
6.5
<b>
| 使用 SSLD 预训练模型+EDA 策略+SKL-UGI 知识蒸馏策略|
|
<b>
PPLCNet_x1_0
<b>
|
<b>
95.72
<b>
|
<b>
2.12
<b>
|
<b>
6.5
<b>
| 使用 SSLD 预训练模型+EDA 策略+SKL-UGI 知识蒸馏策略|
从表中可以看出,backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backboone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是会导致精度大幅下降。将 backbone 替换为速度更快的 PPLCNet_x1_0 时,精度较 MobileNetV3_small_x0_35 高
20 多个百分点,与此同时速度依旧可以快 20% 以上。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 2.6 个百分点,进一步地,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.24 个百分点。此时,PPLCNet_x1_0 达到了
SwinTranformer_tiny 模型的精度,但是速度快 40 多倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
从表中可以看出,backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backboone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是会导致精度大幅下降。将 backbone 替换为速度更快的 PPLCNet_x1_0 时,精度较 MobileNetV3_small_x0_35 高
13 个百分点,与此同时速度依旧可以快 20% 以上。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 0.7 个百分点,进一步地,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.24 个百分点。此时,PPLCNet_x1_0 达到了接近
SwinTranformer_tiny 模型的精度,但是速度快 40 多倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
**备注:**
**备注:**
...
@@ -275,7 +275,7 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3
...
@@ -275,7 +275,7 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3
python3
-m
paddle.distributed.launch
\
python3
-m
paddle.distributed.launch
\
--gpus
=
"0,1,2,3"
\
--gpus
=
"0,1,2,3"
\
tools/train.py
\
tools/train.py
\
-c
./ppcls/configs/PULC/car_exists/PPLCNet
/PPLCNet
_x1_0.yaml
\
-c
./ppcls/configs/PULC/car_exists/PPLCNet_x1_0.yaml
\
-o
Arch.name
=
ResNet101_vd
-o
Arch.name
=
ResNet101_vd
```
```
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录