未验证 提交 ea299cee 编写于 作者: C cuicheng01 提交者: GitHub

Update faq.md

Update faq.md
上级 85eb00fe
......@@ -138,7 +138,7 @@
* A: Mixup通过线性叠加两张图片生成新的图片,对应label也进行线性叠加用以训练,Cutmix则是从一幅图中随机裁剪出一个 感兴趣区域(ROI),然后覆盖当前图像中对应的区域,label也按照图像面积比例进行线性叠加。它们其实也是生成了和训练集不同的样本和label并让网络去学习,从而扩充了样本的丰富度。
>>
* Q: 对于精度要求不是那么高的图像分类任务,大概需要准备多大的训练数据集呢?
* A: 训练数据的数量和需要解决问题的复杂度有关系。难度越大,精度要求越高,则数据集需求越大,而且一般情况实际中的训练数据越多效果越好。当然,一般情况下,在加载预训练模型的情况下,每个类别包括10~20张图像即可保证基本的分类效果;不加载预训练模型的情况下,每个类别需要至少包含100~200张图像以保证基本的分类效果。
* A: 训练数据的数量和需要解决问题的复杂度有关系。难度越大,精度要求越高,则数据集需求越大,而且一般情况实际中的训练数据越多效果越好。当然,一般情况下,在加载预训练模型的情况下,每个类别包括10-20张图像即可保证基本的分类效果;不加载预训练模型的情况下,每个类别需要至少包含100-200张图像以保证基本的分类效果。
>>
* Q: <span id="jump">对于长尾分布的数据集,目前有哪些比较常用的方法?</span>
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册