未验证 提交 e956ac88 编写于 作者: C cuicheng01 提交者: GitHub

Merge pull request #1980 from RainFrost1/deploy_doc

update python inference doc
......@@ -19,7 +19,11 @@
- [3.3 配置文件改动和说明](#3.3)
- [3.4 启动训练](#3.4)
- [3.5 模型预测与调试](#3.5)
- [3.6 模型导出与预测部署](#3.6)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于python预测引擎推理](#4.2)
- [4.3 其他推理方式](#4.3)
<a name="1"></a>
......@@ -211,9 +215,11 @@ python tools/infer.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --infer
`--draw_threshold` 是个可选参数. 根据 [NMS](https://ieeexplore.ieee.org/document/1699659) 的计算,不同阈值会产生不同的结果 `keep_top_k` 表示设置输出目标的最大数量,默认值为 100,用户可以根据自己的实际情况进行设定。
<a name="3.6"></a>
<a name="4"></a>
## 4. 模型推理部署
### 3.6 模型导出与预测部署。
<a name="4.1"></a>
### 4.1 推理模型准备
执行导出模型脚本:
......@@ -225,15 +231,21 @@ python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml
注意: `PaddleDetection` 导出的 inference 模型的文件格式为 `model.xxx`,这里如果希望与 PaddleClas 的 inference 模型文件格式保持一致,需要将其 `model.xxx` 文件修改为 `inference.xxx` 文件,用于后续主体检测的预测部署。
更多模型导出教程,请参考: [EXPORT_MODEL](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/deploy/EXPORT_MODEL.md)
更多模型导出教程,请参考: [EXPORT_MODEL](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/EXPORT_MODEL.md)
最终,目录 `inference/ppyolov2_r50vd_dcn_365e_coco` 中包含 `inference.pdiparams`, `inference.pdiparams.info` 以及 `inference.pdmodel` 文件,其中 `inference.pdiparams` 为保存的 inference 模型权重文件,`inference.pdmodel` 为保存的 inference 模型结构文件。
<a name="4.2"></a>
### 4.2 基于python预测引擎推理
导出模型之后,在主体检测与识别任务中,就可以将检测模型的路径更改为该 inference 模型路径,完成预测。
以商品识别为例,其配置文件为 [inference_product.yaml](../../../deploy/configs/inference_product.yaml),修改其中的 `Global.det_inference_model_dir` 字段为导出的主体检测 inference 模型目录,参考[图像识别快速开始教程](../quick_start/quick_start_recognition.md),即可完成商品检测与识别过程。
<a name="4.3"></a>
### 4.3 其他推理方式
其他推理方法,如C++推理部署、PaddleServing部署等请参考[检测模型推理部署](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/README.md)
### FAQ
......
# 向量检索
## 目录
- [1. 向量检索应用场景介绍](#1)
- [2. 向量检索算法介绍](#2)
- [2.1 HNSW](#2.1)
- [2.2 IVF](#2.2)
- [2.3 FLAT](#2.3)
- [3. 检索库安装](#3)
- [4. 使用及配置文档介绍](#4)
- [4.1 建库及配置文件参数](#4.1)
- [4.2 检索配置文件参数](#4.2)
<a name="1"></a>
## 1. 向量检索应用场景介绍
向量检索技术在图像识别、图像检索中应用比较广泛。其主要目标是,对于给定的查询向量,在已经建立好的向量库中,与库中所有的待查询向量,进行特征向量的相似度或距离计算,得到相似度排序。在图像识别系统中,我们使用 [Faiss](https://github.com/facebookresearch/faiss) 对此部分进行支持,具体信息请详查 [Faiss 官网](https://github.com/facebookresearch/faiss)`Faiss` 主要有以下优势
- 适配性好:支持 Windos、Linux、MacOS 系统
......@@ -20,17 +36,33 @@
--------------------------
## 目录
<a name="2"></a>
## 2. 使用的检索算法
- [1. 检索库安装](#1)
- [2. 使用的检索算法](#2)
- [3. 使用及配置文档介绍](#3)
- [3.1 建库及配置文件参数](#3.1)
- [3.2 检索配置文件参数](#3.2)
目前 `PaddleClas` 中检索模块,支持三种检索算法**HNSW32****IVF****FLAT**。每种检索算法,满足不同场景。其中 `HNSW32` 为默认方法,此方法的检索精度、检索速度可以取得一个较好的平衡,具体算法介绍可以查看[官方文档](https://github.com/facebookresearch/faiss/wiki)
<a name="1"></a>
<a name="2.1"></a>
### 2.1 HNSW方法
此方法为图索引方法,如下图所示,在建立索引的时候,分为不同的层,所以检索精度较高,速度较快,但是特征库只支持添加图像功能,不支持删除图像特征功能。基于图的向量检索算法在向量检索的评测中性能都是比较优异的。如果比较在乎检索算法的效率,而且可以容忍一定的空间成本,多数场景下比较推荐基于图的检索算法。而HNSW是一种典型的,应用广泛的图算法,很多分布式检索引擎都对HNSW算法进行了分布式改造,以应用于高并发,大数据量的线上查询。此方法为默认方法。
<div align="center">
<img src="../../images/algorithm_introduction/hnsw.png" width = "400" />
</div>
<a name="2.2"></a>
### 2.2 IVF
一种倒排索引检索方法。速度较快,但是精度略低。特征库支持增加、删除图像特征功能。IVF主要利用倒排的思想保存每个聚类中心下的向量,每次查询向量的时候找到最近的几个中心,分别搜索这几个中心下的向量。通过减小搜索范围,大大提升搜索效率。
<a name="2.3"></a>
### 2.3 FLAT
## 1. 检索库安装
暴力检索算法。精度最高,但是数据量大时,检索速度较慢。特征库支持增加、删除图像特征功能。
<a name="3"></a>
## 3. 检索库安装
`Faiss` 具体安装方法如下:
......@@ -40,27 +72,16 @@ pip install faiss-cpu==1.7.1post2
若使用时,不能正常引用,则 `uninstall` 之后,重新 `install`,尤其是 `windows` 下。
<a name="2"></a>
## 2. 使用的检索算法
<a name="4"></a>
目前 `PaddleClas` 中检索模块,支持如下三种检索算法
## 4. 使用及配置文档介绍
- **HNSW32**: 一种图索引方法。检索精度较高,速度较快。但是特征库只支持添加图像功能,不支持删除图像特征功能。(默认方法)
- **IVF**:倒排索引检索方法。速度较快,但是精度略低。特征库支持增加、删除图像特征功能。
- **FLAT**: 暴力检索算法。精度最高,但是数据量大时,检索速度较慢。特征库支持增加、删除图像特征功能。
涉及检索模块配置文件位于:`deploy/configs/` 下,其中 `inference_*.yaml` 是检索或者分类的推理配置文件,同时也是建立特征库的相关配置文件。
每种检索算法,满足不同场景。其中 `HNSW32` 为默认方法,此方法的检索精度、检索速度可以取得一个较好的平衡,具体算法介绍可以查看[官方文档](https://github.com/facebookresearch/faiss/wiki)
<a name="4.1"></a>
<a name="3"></a>
## 3. 使用及配置文档介绍
涉及检索模块配置文件位于:`deploy/configs/` 下,其中 `build_*.yaml` 是建立特征库的相关配置文件,`inference_*.yaml` 是检索或者分类的推理配置文件。
<a name="3.1"></a>
### 3.1 建库及配置文件参数
### 4.1 建库及配置文件参数
建库的具体操作如下:
......@@ -68,14 +89,14 @@ pip install faiss-cpu==1.7.1post2
# 进入 deploy 目录
cd deploy
# yaml 文件根据需要改成自己所需的具体 yaml 文件
python python/build_gallery.py -c configs/build_***.yaml
python python/build_gallery.py -c configs/inference_***.yaml
```
其中 `yaml` 文件的建库的配置如下,在运行时,请根据实际情况进行修改。建库操作会将根据 `data_file` 的图像列表,将 `image_root` 下的图像进行特征提取,并在 `index_dir` 下进行存储,以待后续检索使用。
其中 `data_file` 文件存储的是图像文件的路径和标签,每一行的格式为:`image_path label`。中间间隔以 `yaml` 文件中 `delimiter` 参数作为间隔。
关于特征提取的具体模型参数,可查看 `yaml` 文件。
关于特征提取的具体模型参数,可查看 `yaml` 文件。注意下面的配置参数只列举了建立索引库相关部分。
```yaml
# indexing engine config
......@@ -88,6 +109,7 @@ IndexProcess:
delimiter: "\t"
dist_type: "IP"
embedding_size: 512
batch_size: 32
```
- **index_method**:使用的检索算法。目前支持三种,HNSW32、IVF、Flat
......@@ -98,23 +120,29 @@ IndexProcess:
- **delimiter****data_file** 中每一行的间隔符
- **dist_type**: 特征匹配过程中使用的相似度计算方式。例如 `IP` 内积相似度计算方式,`L2` 欧式距离计算方法
- **embedding_size**:特征维度
- **batch_size**:建立特征库时,特征提取的`batch_size`
<a name="4.2"></a>
<a name="3.2"></a>
### 4.2 检索配置文件参数
### 3.2 检索配置文件参数
将检索的过程融合到 `PP-ShiTu` 的整体流程中,请参考 [README](../../../README_ch.md)`PP-ShiTu 图像识别系统介绍` 部分。检索具体使用操作请参考[识别快速开始文档](../quick_start/quick_start_recognition.md)
其中,检索部分配置如下,整体检索配置文件,请参考 `deploy/configs/inference_*.yaml` 文件。
注意:此部分参数只是列举了离线检索相关部分参数。
```yaml
IndexProcess:
index_dir: "./recognition_demo_data_v1.1/gallery_logo/index/"
return_k: 5
score_thres: 0.5
hamming_radius: 100
```
与建库配置文件不同,新参数主要如下:
- `return_k`: 检索结果返回 `k` 个结果
- `score_thres`: 检索匹配的阈值
- `hamming_radius`: 汉明距离半径。此参数只有在使用二值特征模型,`dist_type`设置为`hamming`时才能生效。具体二值特征模型使用方法请参考[哈希编码](./deep_hashing.md)
......@@ -6,10 +6,11 @@
## 目录
- [1. 图像分类推理](#1)
- [2. 主体检测模型推理](#2)
- [3. 特征提取模型推理](#3)
- [4. 主体检测、特征提取和向量检索串联](#4)
- [1. 图像分类模型推理](#1)
- [2. PP-ShiTu模型推理](#2)
- [2.1 主体检测模型推理](#2.1)
- [2.2 特征提取模型推理](#2.2)
- [2.3 PP-ShiTu PipeLine推理](#2.3)
<a name="1"></a>
## 1. 图像分类推理
......@@ -42,7 +43,12 @@ python python/predict_cls.py -c configs/inference_cls.yaml
* 如果你希望提升评测模型速度,使用 GPU 评测时,建议开启 TensorRT 加速预测,使用 CPU 评测时,建议开启 MKL-DNN 加速预测。
<a name="2"></a>
## 2. 主体检测模型推理
## 2. PP-ShiTu模型推理
PP-ShiTu整个Pipeline包含三部分:主体检测、特提取模型、特征检索。其中主体检测、特征模型可以单独推理使用。单独主体检测详见[2.1](#2.1),特征提取模型单独推理详见[2.2](#2.2), PP-ShiTu整体推理详见[2.3](#2.3)
<a name="2.1"></a>
### 2.1 主体检测模型推理
进入 PaddleClas 的 `deploy` 目录下:
......@@ -70,8 +76,8 @@ python python/predict_det.py -c configs/inference_det.yaml
* `Global.use_gpu`: 是否使用 GPU 预测,默认为 `True`
<a name="3"></a>
## 3. 特征提取模型推理
<a name="2.2"></a>
### 2.2 特征提取模型推理
下面以商品特征提取为例,介绍特征提取模型推理。首先进入 PaddleClas 的 `deploy` 目录下:
......@@ -90,7 +96,7 @@ tar -xf ./models/product_ResNet50_vd_aliproduct_v1.0_infer.tar -C ./models/
上述预测命令可以得到一个 512 维的特征向量,直接输出在在命令行中。
<a name="4"></a>
## 4. 主体检测、特征提取和向量检索串联
<a name="2.3"></a>
### 2.3. PP-ShiTu PipeLine推理
主体检测、特征提取和向量检索的串联预测,可以参考图像识别[快速体验](../quick_start/quick_start_recognition.md)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册