未验证 提交 e92cb0b9 编写于 作者: L littletomatodonkey 提交者: GitHub

fix init model in static mode (#444)

上级 fff2a92b
...@@ -39,33 +39,6 @@ from paddle.distributed import fleet ...@@ -39,33 +39,6 @@ from paddle.distributed import fleet
from paddle.distributed.fleet import DistributedStrategy from paddle.distributed.fleet import DistributedStrategy
def _mkdir_if_not_exist(path):
"""
mkdir if not exists, ignore the exception when multiprocess mkdir together
"""
if not os.path.exists(path):
try:
os.makedirs(path)
except OSError as e:
if e.errno == errno.EEXIST and os.path.isdir(path):
logger.warning(
'be happy if some process has already created {}'.format(
path))
else:
raise OSError('Failed to mkdir {}'.format(path))
def save_model(program, model_path, epoch_id, prefix='ppcls'):
"""
save model to the target path
"""
model_path = os.path.join(model_path, str(epoch_id))
_mkdir_if_not_exist(model_path)
model_prefix = os.path.join(model_path, prefix)
paddle.static.save(program, model_prefix)
logger.info("Already save model in {}".format(model_path))
def create_feeds(image_shape, use_mix=None, use_dali=None): def create_feeds(image_shape, use_mix=None, use_dali=None):
""" """
Create feeds as model input Create feeds as model input
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import errno
import os
import re
import shutil
import tempfile
import paddle
from ppcls.utils import logger
__all__ = ['init_model', 'save_model']
def _mkdir_if_not_exist(path):
"""
mkdir if not exists, ignore the exception when multiprocess mkdir together
"""
if not os.path.exists(path):
try:
os.makedirs(path)
except OSError as e:
if e.errno == errno.EEXIST and os.path.isdir(path):
logger.warning(
'be happy if some process has already created {}'.format(
path))
else:
raise OSError('Failed to mkdir {}'.format(path))
def _load_state(path):
if os.path.exists(path + '.pdopt'):
# XXX another hack to ignore the optimizer state
tmp = tempfile.mkdtemp()
dst = os.path.join(tmp, os.path.basename(os.path.normpath(path)))
shutil.copy(path + '.pdparams', dst + '.pdparams')
state = paddle.static.load_program_state(dst)
shutil.rmtree(tmp)
else:
state = paddle.static.load_program_state(path)
return state
def load_params(exe, prog, path, ignore_params=None):
"""
Load model from the given path.
Args:
exe (fluid.Executor): The fluid.Executor object.
prog (fluid.Program): load weight to which Program object.
path (string): URL string or loca model path.
ignore_params (list): ignore variable to load when finetuning.
It can be specified by finetune_exclude_pretrained_params
and the usage can refer to the document
docs/advanced_tutorials/TRANSFER_LEARNING.md
"""
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
raise ValueError("Model pretrain path {} does not "
"exists.".format(path))
logger.info(
logger.coloring('Loading parameters from {}...'.format(path),
'HEADER'))
ignore_set = set()
state = _load_state(path)
# ignore the parameter which mismatch the shape
# between the model and pretrain weight.
all_var_shape = {}
for block in prog.blocks:
for param in block.all_parameters():
all_var_shape[param.name] = param.shape
ignore_set.update([
name for name, shape in all_var_shape.items()
if name in state and shape != state[name].shape
])
if ignore_params:
all_var_names = [var.name for var in prog.list_vars()]
ignore_list = filter(
lambda var: any([re.match(name, var) for name in ignore_params]),
all_var_names)
ignore_set.update(list(ignore_list))
if len(ignore_set) > 0:
for k in ignore_set:
if k in state:
logger.warning(
'variable {} is already excluded automatically'.format(k))
del state[k]
paddle.static.set_program_state(prog, state)
def init_model(config, program, exe):
"""
load model from checkpoint or pretrained_model
"""
checkpoints = config.get('checkpoints')
if checkpoints:
paddle.static.load(program, checkpoints, exe)
logger.info(
logger.coloring("Finish initing model from {}".format(checkpoints),
"HEADER"))
return
pretrained_model = config.get('pretrained_model')
if pretrained_model:
if not isinstance(pretrained_model, list):
pretrained_model = [pretrained_model]
for pretrain in pretrained_model:
load_params(exe, program, pretrain)
logger.info(
logger.coloring("Finish initing model from {}".format(
pretrained_model), "HEADER"))
def save_model(program, model_path, epoch_id, prefix='ppcls'):
"""
save model to the target path
"""
model_path = os.path.join(model_path, str(epoch_id))
_mkdir_if_not_exist(model_path)
model_prefix = os.path.join(model_path, prefix)
paddle.static.save(program, model_prefix)
logger.info(
logger.coloring("Already save model in {}".format(model_path),
"HEADER"))
...@@ -32,7 +32,7 @@ from ppcls.data import Reader ...@@ -32,7 +32,7 @@ from ppcls.data import Reader
from ppcls.utils.config import get_config from ppcls.utils.config import get_config
from ppcls.utils import logger from ppcls.utils import logger
from tools.static import program from tools.static import program
from program import save_model from save_load import init_model, save_model
def parse_args(): def parse_args():
...@@ -103,6 +103,9 @@ def main(args): ...@@ -103,6 +103,9 @@ def main(args):
# Parameter initialization # Parameter initialization
exe.run(startup_prog) exe.run(startup_prog)
# load pretrained models or checkpoints
init_model(config, train_prog, exe)
if not config.get('use_dali', False): if not config.get('use_dali', False):
train_dataloader = Reader(config, 'train', places=place)() train_dataloader = Reader(config, 'train', places=place)()
if config.validate and paddle.distributed.get_rank() == 0: if config.validate and paddle.distributed.get_rank() == 0:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册