提交 e0daf82d 编写于 作者: Y Yang Nie 提交者: Tingquan Gao

rename micronet_m(\d) to MicroNet_M(\d)

上级 8a578a08
...@@ -76,7 +76,7 @@ from .model_zoo.convnext import ConvNeXt_tiny, ConvNeXt_small, ConvNeXt_base_224 ...@@ -76,7 +76,7 @@ from .model_zoo.convnext import ConvNeXt_tiny, ConvNeXt_small, ConvNeXt_base_224
from .model_zoo.nextvit import NextViT_small_224, NextViT_base_224, NextViT_large_224, NextViT_small_384, NextViT_base_384, NextViT_large_384 from .model_zoo.nextvit import NextViT_small_224, NextViT_base_224, NextViT_large_224, NextViT_small_384, NextViT_base_384, NextViT_large_384
from .model_zoo.cae import cae_base_patch16_224, cae_large_patch16_224 from .model_zoo.cae import cae_base_patch16_224, cae_large_patch16_224
from .model_zoo.cvt import CvT_13_224, CvT_13_384, CvT_21_224, CvT_21_384, CvT_W24_384 from .model_zoo.cvt import CvT_13_224, CvT_13_384, CvT_21_224, CvT_21_384, CvT_W24_384
from .model_zoo.micronet import micronet_m0, micronet_m1, micronet_m2, micronet_m3 from .model_zoo.micronet import MicroNet_M0, MicroNet_M1, MicroNet_M2, MicroNet_M3
from .variant_models.resnet_variant import ResNet50_last_stage_stride1 from .variant_models.resnet_variant import ResNet50_last_stage_stride1
from .variant_models.resnet_variant import ResNet50_adaptive_max_pool2d from .variant_models.resnet_variant import ResNet50_adaptive_max_pool2d
......
...@@ -23,10 +23,10 @@ import paddle.nn as nn ...@@ -23,10 +23,10 @@ import paddle.nn as nn
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = { MODEL_URLS = {
"micronet_m0": "", # TODO "MicroNet_M0": "", # TODO
"micronet_m1": "", # TODO "MicroNet_M1": "", # TODO
"micronet_m2": "", # TODO "MicroNet_M2": "", # TODO
"micronet_m3": "", # TODO "MicroNet_M3": "", # TODO
} }
__all__ = MODEL_URLS.keys() __all__ = MODEL_URLS.keys()
...@@ -562,7 +562,7 @@ def _load_pretrained(pretrained, model, model_url, use_ssld): ...@@ -562,7 +562,7 @@ def _load_pretrained(pretrained, model, model_url, use_ssld):
) )
def micronet_m0(pretrained=False, use_ssld=False, **kwargs): def MicroNet_M0(pretrained=False, use_ssld=False, **kwargs):
model = MicroNet( model = MicroNet(
NET_CONFIG["msnx_dy6_exp4_4M_221"], NET_CONFIG["msnx_dy6_exp4_4M_221"],
ACTIVATION_CONFIG["msnx_dy6_exp4_4M_221"], ACTIVATION_CONFIG["msnx_dy6_exp4_4M_221"],
...@@ -571,11 +571,11 @@ def micronet_m0(pretrained=False, use_ssld=False, **kwargs): ...@@ -571,11 +571,11 @@ def micronet_m0(pretrained=False, use_ssld=False, **kwargs):
out_ch=640, out_ch=640,
dropout_rate=0.05, dropout_rate=0.05,
**kwargs) **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["micronet_m0"], use_ssld) _load_pretrained(pretrained, model, MODEL_URLS["MicroNet_M0"], use_ssld)
return model return model
def micronet_m1(pretrained=False, use_ssld=False, **kwargs): def MicroNet_M1(pretrained=False, use_ssld=False, **kwargs):
model = MicroNet( model = MicroNet(
NET_CONFIG["msnx_dy6_exp6_6M_221"], NET_CONFIG["msnx_dy6_exp6_6M_221"],
ACTIVATION_CONFIG["msnx_dy6_exp6_6M_221"], ACTIVATION_CONFIG["msnx_dy6_exp6_6M_221"],
...@@ -584,11 +584,11 @@ def micronet_m1(pretrained=False, use_ssld=False, **kwargs): ...@@ -584,11 +584,11 @@ def micronet_m1(pretrained=False, use_ssld=False, **kwargs):
out_ch=960, out_ch=960,
dropout_rate=0.05, dropout_rate=0.05,
**kwargs) **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["micronet_m1"], use_ssld) _load_pretrained(pretrained, model, MODEL_URLS["MicroNet_M1"], use_ssld)
return model return model
def micronet_m2(pretrained=False, use_ssld=False, **kwargs): def MicroNet_M2(pretrained=False, use_ssld=False, **kwargs):
model = MicroNet( model = MicroNet(
NET_CONFIG["msnx_dy9_exp6_12M_221"], NET_CONFIG["msnx_dy9_exp6_12M_221"],
ACTIVATION_CONFIG["msnx_dy9_exp6_12M_221"], ACTIVATION_CONFIG["msnx_dy9_exp6_12M_221"],
...@@ -597,11 +597,11 @@ def micronet_m2(pretrained=False, use_ssld=False, **kwargs): ...@@ -597,11 +597,11 @@ def micronet_m2(pretrained=False, use_ssld=False, **kwargs):
out_ch=1024, out_ch=1024,
dropout_rate=0.1, dropout_rate=0.1,
**kwargs) **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["micronet_m2"], use_ssld) _load_pretrained(pretrained, model, MODEL_URLS["MicroNet_M2"], use_ssld)
return model return model
def micronet_m3(pretrained=False, use_ssld=False, **kwargs): def MicroNet_M3(pretrained=False, use_ssld=False, **kwargs):
model = MicroNet( model = MicroNet(
NET_CONFIG["msnx_dy12_exp6_20M_020"], NET_CONFIG["msnx_dy12_exp6_20M_020"],
ACTIVATION_CONFIG["msnx_dy12_exp6_20M_020"], ACTIVATION_CONFIG["msnx_dy12_exp6_20M_020"],
...@@ -610,5 +610,5 @@ def micronet_m3(pretrained=False, use_ssld=False, **kwargs): ...@@ -610,5 +610,5 @@ def micronet_m3(pretrained=False, use_ssld=False, **kwargs):
out_ch=1024, out_ch=1024,
dropout_rate=0.1, dropout_rate=0.1,
**kwargs) **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["micronet_m3"], use_ssld) _load_pretrained(pretrained, model, MODEL_URLS["MicroNet_M3"], use_ssld)
return model return model
...@@ -18,7 +18,7 @@ Global: ...@@ -18,7 +18,7 @@ Global:
# model architecture # model architecture
Arch: Arch:
name: micronet_m0 name: MicroNet_M0
class_num: 1000 class_num: 1000
# loss function config for traing/eval process # loss function config for traing/eval process
......
...@@ -18,7 +18,7 @@ Global: ...@@ -18,7 +18,7 @@ Global:
# model architecture # model architecture
Arch: Arch:
name: micronet_m1 name: MicroNet_M1
class_num: 1000 class_num: 1000
# loss function config for traing/eval process # loss function config for traing/eval process
......
...@@ -18,7 +18,7 @@ Global: ...@@ -18,7 +18,7 @@ Global:
# model architecture # model architecture
Arch: Arch:
name: micronet_m2 name: MicroNet_M2
class_num: 1000 class_num: 1000
# loss function config for traing/eval process # loss function config for traing/eval process
......
...@@ -18,7 +18,7 @@ Global: ...@@ -18,7 +18,7 @@ Global:
# model architecture # model architecture
Arch: Arch:
name: micronet_m3 name: MicroNet_M3
class_num: 1000 class_num: 1000
# loss function config for traing/eval process # loss function config for traing/eval process
......
===========================train_params=========================== ===========================train_params===========================
model_name:micronet_m0 model_name:MicroNet_M0
python:python3 python:python3
gpu_list:0|0,1 gpu_list:0|0,1
-o Global.device:gpu -o Global.device:gpu
...@@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val ...@@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null null:null
## ##
trainer:norm_train trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MicroNet/micronet_m0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False norm_train:tools/train.py -c ppcls/configs/ImageNet/MicroNet/MicroNet_M0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null pact_train:null
fpgm_train:null fpgm_train:null
distill_train:null distill_train:null
...@@ -21,13 +21,13 @@ null:null ...@@ -21,13 +21,13 @@ null:null
null:null null:null
## ##
===========================eval_params=========================== ===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MicroNet/micronet_m0.yaml eval:tools/eval.py -c ppcls/configs/ImageNet/MicroNet/MicroNet_M0.yaml
null:null null:null
## ##
===========================infer_params========================== ===========================infer_params==========================
-o Global.save_inference_dir:./inference -o Global.save_inference_dir:./inference
-o Global.pretrained_model: -o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MicroNet/micronet_m0.yaml norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MicroNet/MicroNet_M0.yaml
quant_export:null quant_export:null
fpgm_export:null fpgm_export:null
distill_export:null distill_export:null
......
===========================train_params=========================== ===========================train_params===========================
model_name:micronet_m1 model_name:MicroNet_M1
python:python3 python:python3
gpu_list:0|0,1 gpu_list:0|0,1
-o Global.device:gpu -o Global.device:gpu
...@@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val ...@@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null null:null
## ##
trainer:norm_train trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MicroNet/micronet_m1.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False norm_train:tools/train.py -c ppcls/configs/ImageNet/MicroNet/MicroNet_M1.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null pact_train:null
fpgm_train:null fpgm_train:null
distill_train:null distill_train:null
...@@ -21,13 +21,13 @@ null:null ...@@ -21,13 +21,13 @@ null:null
null:null null:null
## ##
===========================eval_params=========================== ===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MicroNet/micronet_m1.yaml eval:tools/eval.py -c ppcls/configs/ImageNet/MicroNet/MicroNet_M1.yaml
null:null null:null
## ##
===========================infer_params========================== ===========================infer_params==========================
-o Global.save_inference_dir:./inference -o Global.save_inference_dir:./inference
-o Global.pretrained_model: -o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MicroNet/micronet_m1.yaml norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MicroNet/MicroNet_M1.yaml
quant_export:null quant_export:null
fpgm_export:null fpgm_export:null
distill_export:null distill_export:null
......
===========================train_params=========================== ===========================train_params===========================
model_name:micronet_m2 model_name:MicroNet_M2
python:python3 python:python3
gpu_list:0|0,1 gpu_list:0|0,1
-o Global.device:gpu -o Global.device:gpu
...@@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val ...@@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null null:null
## ##
trainer:norm_train trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MicroNet/micronet_m2.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False norm_train:tools/train.py -c ppcls/configs/ImageNet/MicroNet/MicroNet_M2.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null pact_train:null
fpgm_train:null fpgm_train:null
distill_train:null distill_train:null
...@@ -21,13 +21,13 @@ null:null ...@@ -21,13 +21,13 @@ null:null
null:null null:null
## ##
===========================eval_params=========================== ===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MicroNet/micronet_m2.yaml eval:tools/eval.py -c ppcls/configs/ImageNet/MicroNet/MicroNet_M2.yaml
null:null null:null
## ##
===========================infer_params========================== ===========================infer_params==========================
-o Global.save_inference_dir:./inference -o Global.save_inference_dir:./inference
-o Global.pretrained_model: -o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MicroNet/micronet_m2.yaml norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MicroNet/MicroNet_M2.yaml
quant_export:null quant_export:null
fpgm_export:null fpgm_export:null
distill_export:null distill_export:null
......
===========================train_params=========================== ===========================train_params===========================
model_name:micronet_m3 model_name:MicroNet_M3
python:python3 python:python3
gpu_list:0|0,1 gpu_list:0|0,1
-o Global.device:gpu -o Global.device:gpu
...@@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val ...@@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null null:null
## ##
trainer:norm_train trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MicroNet/micronet_m3.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False norm_train:tools/train.py -c ppcls/configs/ImageNet/MicroNet/MicroNet_M3.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null pact_train:null
fpgm_train:null fpgm_train:null
distill_train:null distill_train:null
...@@ -21,13 +21,13 @@ null:null ...@@ -21,13 +21,13 @@ null:null
null:null null:null
## ##
===========================eval_params=========================== ===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MicroNet/micronet_m3.yaml eval:tools/eval.py -c ppcls/configs/ImageNet/MicroNet/MicroNet_M3.yaml
null:null null:null
## ##
===========================infer_params========================== ===========================infer_params==========================
-o Global.save_inference_dir:./inference -o Global.save_inference_dir:./inference
-o Global.pretrained_model: -o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MicroNet/micronet_m3.yaml norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MicroNet/MicroNet_M3.yaml
quant_export:null quant_export:null
fpgm_export:null fpgm_export:null
distill_export:null distill_export:null
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册