Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
e069dedd
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e069dedd
编写于
12月 15, 2022
作者:
L
LittleMoon
提交者:
cuicheng01
12月 22, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modified DSNet model names
上级
28e094e0
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
665 addition
and
22 deletion
+665
-22
ppcls/arch/backbone/__init__.py
ppcls/arch/backbone/__init__.py
+1
-1
ppcls/arch/backbone/model_zoo/dsnet.py
ppcls/arch/backbone/model_zoo/dsnet.py
+12
-21
ppcls/configs/ImageNet/DSNet/DSNet_base.yaml
ppcls/configs/ImageNet/DSNet/DSNet_base.yaml
+157
-0
ppcls/configs/ImageNet/DSNet/DSNet_small.yaml
ppcls/configs/ImageNet/DSNet/DSNet_small.yaml
+158
-0
ppcls/configs/ImageNet/DSNet/DSNet_tiny.yaml
ppcls/configs/ImageNet/DSNet/DSNet_tiny.yaml
+157
-0
test_tipc/configs/DSNet/DSNet_base_train_infer_python.txt
test_tipc/configs/DSNet/DSNet_base_train_infer_python.txt
+60
-0
test_tipc/configs/DSNet/DSNet_small_train_infer_python.txt
test_tipc/configs/DSNet/DSNet_small_train_infer_python.txt
+60
-0
test_tipc/configs/DSNet/DSNet_tiny_train_infer_python.txt
test_tipc/configs/DSNet/DSNet_tiny_train_infer_python.txt
+60
-0
未找到文件。
ppcls/arch/backbone/__init__.py
浏览文件 @
e069dedd
...
...
@@ -35,7 +35,7 @@ from .model_zoo.se_resnet_vd import SE_ResNet18_vd, SE_ResNet34_vd, SE_ResNet50_
from
.model_zoo.se_resnext_vd
import
SE_ResNeXt50_vd_32x4d
,
SE_ResNeXt50_vd_32x4d
,
SENet154_vd
from
.model_zoo.se_resnext
import
SE_ResNeXt50_32x4d
,
SE_ResNeXt101_32x4d
,
SE_ResNeXt152_64x4d
from
.model_zoo.dpn
import
DPN68
,
DPN92
,
DPN98
,
DPN107
,
DPN131
from
.model_zoo.dsnet
import
DSNet_tiny
_patch16_224
,
DSNet_small_patch16_224
,
DSNet_base_patch16_224
from
.model_zoo.dsnet
import
DSNet_tiny
,
DSNet_small
,
DSNet_base
from
.model_zoo.densenet
import
DenseNet121
,
DenseNet161
,
DenseNet169
,
DenseNet201
,
DenseNet264
from
.model_zoo.efficientnet
import
EfficientNetB0
,
EfficientNetB1
,
EfficientNetB2
,
EfficientNetB3
,
EfficientNetB4
,
EfficientNetB5
,
EfficientNetB6
,
EfficientNetB7
,
EfficientNetB0_small
from
.model_zoo.resnest
import
ResNeSt50_fast_1s1x64d
,
ResNeSt50
,
ResNeSt101
,
ResNeSt200
,
ResNeSt269
...
...
ppcls/arch/backbone/model_zoo/dsnet.py
浏览文件 @
e069dedd
...
...
@@ -25,12 +25,12 @@ from paddle.nn.initializer import TruncatedNormal, Constant, Normal
from
....utils.save_load
import
load_dygraph_pretrain
,
load_dygraph_pretrain_from_url
MODEL_URLS
=
{
"DSNet_tiny
_patch16_224
"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DSNet_tiny_p
atch16_224_p
retrained.pdparams"
,
"DSNet_small
_patch16_224
"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DSNet_small_p
atch16_224_p
retrained.pdparams"
,
"DSNet_base
_patch16_224
"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DSNet_base_p
atch16_224_p
retrained.pdparams"
,
"DSNet_tiny"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DSNet_tiny_pretrained.pdparams"
,
"DSNet_small"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DSNet_small_pretrained.pdparams"
,
"DSNet_base"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DSNet_base_pretrained.pdparams"
,
}
__all__
=
list
(
MODEL_URLS
.
keys
())
...
...
@@ -659,7 +659,7 @@ def _load_pretrained(pretrained, model, model_url, use_ssld=False):
)
def
DSNet_tiny
_patch16_224
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
def
DSNet_tiny
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
MixVisionTransformer
(
patch_size
=
16
,
depth
=
[
2
,
2
,
4
,
1
],
...
...
@@ -669,14 +669,11 @@ def DSNet_tiny_patch16_224(pretrained=False, use_ssld=False, **kwargs):
nn
.
LayerNorm
,
eps
=
1e-6
),
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"DSNet_tiny_patch16_224"
],
use_ssld
=
use_ssld
)
pretrained
,
model
,
MODEL_URLS
[
"DSNet_tiny"
],
use_ssld
=
use_ssld
)
return
model
def
DSNet_small
_patch16_224
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
def
DSNet_small
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
MixVisionTransformer
(
patch_size
=
16
,
depth
=
[
3
,
4
,
8
,
3
],
...
...
@@ -686,14 +683,11 @@ def DSNet_small_patch16_224(pretrained=False, use_ssld=False, **kwargs):
nn
.
LayerNorm
,
eps
=
1e-6
),
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"DSNet_small_patch16_224"
],
use_ssld
=
use_ssld
)
pretrained
,
model
,
MODEL_URLS
[
"DSNet_small"
],
use_ssld
=
use_ssld
)
return
model
def
DSNet_base
_patch16_224
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
def
DSNet_base
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
MixVisionTransformer
(
patch_size
=
16
,
depth
=
[
3
,
4
,
28
,
3
],
...
...
@@ -703,8 +697,5 @@ def DSNet_base_patch16_224(pretrained=False, use_ssld=False, **kwargs):
nn
.
LayerNorm
,
eps
=
1e-6
),
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"DSNet_base_patch16_224"
],
use_ssld
=
use_ssld
)
pretrained
,
model
,
MODEL_URLS
[
"DSNet_base"
],
use_ssld
=
use_ssld
)
return
model
ppcls/configs/ImageNet/DSNet/DSNet_base.yaml
0 → 100644
浏览文件 @
e069dedd
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
epochs
:
300
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
224
,
224
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
# model architecture
Arch
:
name
:
DSNet_base
class_num
:
1000
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
epsilon
:
0.1
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
AdamW
beta1
:
0.9
beta2
:
0.999
epsilon
:
1e-8
weight_decay
:
0.05
no_weight_decay_name
:
norm cls_token pos_embed dist_token
one_dim_param_no_weight_decay
:
True
lr
:
name
:
Cosine
learning_rate
:
1e-3
eta_min
:
1e-5
warmup_epoch
:
5
warmup_start_lr
:
1e-6
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
RandCropImage
:
size
:
224
interpolation
:
bicubic
backend
:
pil
-
RandFlipImage
:
flip_code
:
1
-
TimmAutoAugment
:
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.25
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
batch_transform_ops
:
-
OpSampler
:
MixupOperator
:
alpha
:
0.8
prob
:
0.5
CutmixOperator
:
alpha
:
1.0
prob
:
0.5
sampler
:
name
:
DistributedBatchSampler
batch_size
:
128
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
248
interpolation
:
bicubic
backend
:
pil
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
128
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
248
interpolation
:
bicubic
backend
:
pil
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Eval
:
-
TopkAcc
:
topk
:
[
1
,
5
]
ppcls/configs/ImageNet/DSNet/DSNet_small.yaml
0 → 100644
浏览文件 @
e069dedd
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
epochs
:
300
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
224
,
224
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
# model architecture
Arch
:
name
:
DSNet_small
class_num
:
1000
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
epsilon
:
0.1
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
AdamW
beta1
:
0.9
beta2
:
0.999
epsilon
:
1e-8
weight_decay
:
0.05
no_weight_decay_name
:
norm cls_token pos_embed dist_token
one_dim_param_no_weight_decay
:
True
lr
:
name
:
Cosine
learning_rate
:
1e-3
eta_min
:
1e-5
warmup_epoch
:
5
warmup_start_lr
:
1e-6
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
RandCropImage
:
size
:
224
interpolation
:
bicubic
backend
:
pil
-
RandFlipImage
:
flip_code
:
1
-
TimmAutoAugment
:
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.25
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
batch_transform_ops
:
-
OpSampler
:
MixupOperator
:
alpha
:
0.8
prob
:
0.5
CutmixOperator
:
alpha
:
1.0
prob
:
0.5
sampler
:
name
:
DistributedBatchSampler
batch_size
:
128
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
248
interpolation
:
bicubic
backend
:
pil
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
128
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
248
interpolation
:
bicubic
backend
:
pil
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Eval
:
-
TopkAcc
:
topk
:
[
1
,
5
]
ppcls/configs/ImageNet/DSNet/DSNet_tiny.yaml
0 → 100644
浏览文件 @
e069dedd
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
epochs
:
300
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
224
,
224
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
# model architecture
Arch
:
name
:
DSNet_tiny
class_num
:
1000
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
epsilon
:
0.1
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
AdamW
beta1
:
0.9
beta2
:
0.999
epsilon
:
1e-8
weight_decay
:
0.05
no_weight_decay_name
:
norm cls_token pos_embed dist_token
one_dim_param_no_weight_decay
:
True
lr
:
name
:
Cosine
learning_rate
:
1e-3
eta_min
:
1e-5
warmup_epoch
:
5
warmup_start_lr
:
1e-6
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
RandCropImage
:
size
:
224
interpolation
:
bicubic
backend
:
pil
-
RandFlipImage
:
flip_code
:
1
-
TimmAutoAugment
:
config_str
:
rand-m9-mstd0.5-inc1
interpolation
:
bicubic
img_size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.25
sl
:
0.02
sh
:
1.0/3.0
r1
:
0.3
attempt
:
10
use_log_aspect
:
True
mode
:
pixel
batch_transform_ops
:
-
OpSampler
:
MixupOperator
:
alpha
:
0.8
prob
:
0.5
CutmixOperator
:
alpha
:
1.0
prob
:
0.5
sampler
:
name
:
DistributedBatchSampler
batch_size
:
128
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
8
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
248
interpolation
:
bicubic
backend
:
pil
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
128
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
248
interpolation
:
bicubic
backend
:
pil
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Eval
:
-
TopkAcc
:
topk
:
[
1
,
5
]
test_tipc/configs/DSNet/DSNet_base_train_infer_python.txt
0 → 100644
浏览文件 @
e069dedd
===========================train_params===========================
model_name:DSNet_base
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/DSNet/DSNet_base.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 -o Arch.pretrained=False
pact_train:null
fpgm_train:null
distill_train:null
to_static_train:-o Global.to_static=True
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/DSNet/DSNet_base.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/DSNet/DSNet_base.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:null
infer_model:../inference/
infer_export:True
infer_quant:False
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=248
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val/ILSVRC2012_val_00000001.JPEG
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================train_benchmark_params==========================
batch_size:128
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
test_tipc/configs/DSNet/DSNet_small_train_infer_python.txt
0 → 100644
浏览文件 @
e069dedd
===========================train_params===========================
model_name:DSNet_small
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/DSNet/DSNet_small.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 -o Arch.pretrained=False
pact_train:null
fpgm_train:null
distill_train:null
to_static_train:-o Global.to_static=True
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/DSNet/DSNet_small.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/DSNet/DSNet_small.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:null
infer_model:../inference/
infer_export:True
infer_quant:False
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=248
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val/ILSVRC2012_val_00000001.JPEG
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================train_benchmark_params==========================
batch_size:128
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
test_tipc/configs/DSNet/DSNet_tiny_train_infer_python.txt
0 → 100644
浏览文件 @
e069dedd
===========================train_params===========================
model_name:DSNet_tiny
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/DSNet/DSNet_tiny.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2 -o Arch.pretrained=False
pact_train:null
fpgm_train:null
distill_train:null
to_static_train:-o Global.to_static=True
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/DSNet/DSNet_tiny.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/DSNet/DSNet_tiny.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:null
infer_model:../inference/
infer_export:True
infer_quant:False
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=248
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val/ILSVRC2012_val_00000001.JPEG
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================train_benchmark_params==========================
batch_size:128
fp_items:fp32
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录