Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
decdb51b
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 2 年 前同步成功
通知
118
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
decdb51b
编写于
5月 28, 2021
作者:
W
Walter
提交者:
GitHub
5月 28, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #742 from cuicheng01/develop_reg
Add resnet.py in legendary_models
上级
487c7972
0f3d321b
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
572 addition
and
0 deletion
+572
-0
ppcls/arch/backbone/legendary_models/resnet.py
ppcls/arch/backbone/legendary_models/resnet.py
+563
-0
ppcls/utils/save_load.py
ppcls/utils/save_load.py
+9
-0
未找到文件。
ppcls/arch/backbone/legendary_models/resnet.py
0 → 100644
浏览文件 @
decdb51b
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
,
division
,
print_function
import
numpy
as
np
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2D
,
BatchNorm
,
Linear
from
paddle.nn
import
AdaptiveAvgPool2D
,
MaxPool2D
,
AvgPool2D
from
paddle.nn.initializer
import
Uniform
import
math
from
ppcls.arch.backbone.base.theseus_layer
import
TheseusLayer
from
ppcls.utils.save_load
import
load_dygraph_pretrain_from
,
load_dygraph_pretrain_from_url
MODEL_URLS
=
{
"ResNet18"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams"
,
"ResNet18_vd"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams"
,
"ResNet34"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams"
,
"ResNet34_vd"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_pretrained.pdparams"
,
"ResNet50"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_pretrained.pdparams"
,
"ResNet50_vd"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams"
,
"ResNet101"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_pretrained.pdparams"
,
"ResNet101_vd"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_pretrained.pdparams"
,
"ResNet152"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_pretrained.pdparams"
,
"ResNet152_vd"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_vd_pretrained.pdparams"
,
"ResNet200_vd"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet200_vd_pretrained.pdparams"
,
}
__all__
=
MODEL_URLS
.
keys
()
'''
ResNet config: dict.
key: depth of ResNet.
values: config's dict of specific model.
keys:
block_type: Two different blocks in ResNet, BasicBlock and BottleneckBlock are optional.
block_depth: The number of blocks in different stages in ResNet.
num_channels: The number of channels to enter the next stage.
'''
NET_CONFIG
=
{
"18"
:
{
"block_type"
:
"BasicBlock"
,
"block_depth"
:
[
2
,
2
,
2
,
2
],
"num_channels"
:
[
64
,
64
,
128
,
256
]},
"34"
:
{
"block_type"
:
"BasicBlock"
,
"block_depth"
:
[
3
,
4
,
6
,
3
],
"num_channels"
:
[
64
,
64
,
128
,
256
]},
"50"
:
{
"block_type"
:
"BottleneckBlock"
,
"block_depth"
:
[
3
,
4
,
6
,
3
],
"num_channels"
:
[
64
,
256
,
512
,
1024
]},
"101"
:
{
"block_type"
:
"BottleneckBlock"
,
"block_depth"
:
[
3
,
4
,
23
,
3
],
"num_channels"
:
[
64
,
256
,
512
,
1024
]},
"152"
:
{
"block_type"
:
"BottleneckBlock"
,
"block_depth"
:
[
3
,
8
,
36
,
3
],
"num_channels"
:
[
64
,
256
,
512
,
1024
]},
"200"
:
{
"block_type"
:
"BottleneckBlock"
,
"block_depth"
:
[
3
,
12
,
48
,
3
],
"num_channels"
:
[
64
,
256
,
512
,
1024
]},
}
class
ConvBNLayer
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
is_vd_mode
=
False
,
act
=
None
,
lr_mult
=
1.0
):
super
().
__init__
()
self
.
is_vd_mode
=
is_vd_mode
self
.
act
=
act
self
.
avg_pool
=
AvgPool2D
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
conv
=
Conv2D
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
learning_rate
=
lr_mult
),
bias_attr
=
False
)
self
.
bn
=
BatchNorm
(
num_filters
,
param_attr
=
ParamAttr
(
learning_rate
=
lr_mult
),
bias_attr
=
ParamAttr
(
learning_rate
=
lr_mult
))
self
.
relu
=
nn
.
ReLU
()
def
forward
(
self
,
x
):
if
self
.
is_vd_mode
:
x
=
self
.
avg_pool
(
x
)
x
=
self
.
conv
(
x
)
x
=
self
.
bn
(
x
)
if
self
.
act
:
x
=
self
.
relu
(
x
)
return
x
class
BottleneckBlock
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
,
if_first
=
False
,
lr_mult
=
1.0
,
):
super
().
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
"relu"
,
lr_mult
=
lr_mult
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
"relu"
,
lr_mult
=
lr_mult
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
,
lr_mult
=
lr_mult
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
stride
=
stride
if
if_first
else
1
,
is_vd_mode
=
False
if
if_first
else
True
,
lr_mult
=
lr_mult
)
self
.
relu
=
nn
.
ReLU
()
self
.
shortcut
=
shortcut
def
forward
(
self
,
x
):
identity
=
x
x
=
self
.
conv0
(
x
)
x
=
self
.
conv1
(
x
)
x
=
self
.
conv2
(
x
)
if
self
.
shortcut
:
short
=
identity
else
:
short
=
self
.
short
(
identity
)
x
=
paddle
.
add
(
x
=
x
,
y
=
short
)
x
=
self
.
relu
(
x
)
return
x
class
BasicBlock
(
TheseusLayer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
,
if_first
=
False
,
lr_mult
=
1.0
):
super
().
__init__
()
self
.
stride
=
stride
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
"relu"
,
lr_mult
=
lr_mult
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
act
=
None
,
lr_mult
=
lr_mult
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
stride
=
stride
if
if_first
else
1
,
is_vd_mode
=
False
if
if_first
else
True
,
lr_mult
=
lr_mult
)
self
.
shortcut
=
shortcut
self
.
relu
=
nn
.
ReLU
()
def
forward
(
self
,
x
):
identity
=
x
x
=
self
.
conv0
(
x
)
x
=
self
.
conv1
(
x
)
if
self
.
shortcut
:
short
=
identity
else
:
short
=
self
.
short
(
identity
)
x
=
paddle
.
add
(
x
=
x
,
y
=
short
)
x
=
self
.
relu
(
x
)
return
x
class
ResNet
(
TheseusLayer
):
"""
ResNet
Args:
config: dict. config of ResNet.
version: str="vb". Different version of ResNet, version vd can perform better.
class_num: int=1000. The number of classes.
lr_mult_list: list. Control the learning rate of different stages.
pretrained: (True or False) or path of pretrained_model. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific ResNet model depends on args.
"""
def
__init__
(
self
,
config
,
version
=
"vb"
,
class_num
=
1000
,
lr_mult_list
=
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
],
pretrained
=
False
):
super
().
__init__
()
self
.
cfg
=
config
self
.
lr_mult_list
=
lr_mult_list
self
.
is_vd_mode
=
version
==
"vd"
self
.
class_num
=
class_num
self
.
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
block_depth
=
self
.
cfg
[
"block_depth"
]
self
.
block_type
=
self
.
cfg
[
"block_type"
]
self
.
num_channels
=
self
.
cfg
[
"num_channels"
]
self
.
channels_mult
=
1
if
self
.
num_channels
[
-
1
]
==
256
else
4
self
.
pretrained
=
pretrained
assert
isinstance
(
self
.
lr_mult_list
,
(
list
,
tuple
)),
"lr_mult_list should be in (list, tuple) but got {}"
.
format
(
type
(
self
.
lr_mult_list
))
assert
len
(
self
.
lr_mult_list
)
==
5
,
"lr_mult_list length should be 5 but got {}"
.
format
(
len
(
self
.
lr_mult_list
))
self
.
stem_cfg
=
{
#num_channels, num_filters, filter_size, stride
"vb"
:
[[
3
,
64
,
7
,
2
]],
"vd"
:
[[
3
,
32
,
3
,
2
],
[
32
,
32
,
3
,
1
],
[
32
,
64
,
3
,
1
]]}
self
.
stem
=
nn
.
Sequential
(
*
[
ConvBNLayer
(
num_channels
=
in_c
,
num_filters
=
out_c
,
filter_size
=
k
,
stride
=
s
,
act
=
"relu"
,
lr_mult
=
self
.
lr_mult_list
[
0
])
for
in_c
,
out_c
,
k
,
s
in
self
.
stem_cfg
[
version
]
])
self
.
max_pool
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
block_list
=
[]
for
block_idx
in
range
(
len
(
self
.
block_depth
)):
shortcut
=
False
for
i
in
range
(
self
.
block_depth
[
block_idx
]):
block_list
.
append
(
globals
()[
self
.
block_type
](
num_channels
=
self
.
num_channels
[
block_idx
]
if
i
==
0
else
self
.
num_filters
[
block_idx
]
*
self
.
channels_mult
,
num_filters
=
self
.
num_filters
[
block_idx
],
stride
=
2
if
i
==
0
and
block_idx
!=
0
else
1
,
shortcut
=
shortcut
,
if_first
=
block_idx
==
i
==
0
if
version
==
"vd"
else
True
,
lr_mult
=
self
.
lr_mult_list
[
block_idx
+
1
]))
shortcut
=
True
self
.
blocks
=
nn
.
Sequential
(
*
block_list
)
self
.
avg_pool
=
AdaptiveAvgPool2D
(
1
)
self
.
avg_pool_channels
=
self
.
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
avg_pool_channels
*
1.0
)
self
.
fc
=
Linear
(
self
.
avg_pool_channels
,
self
.
class_num
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)))
def
forward
(
self
,
x
):
x
=
self
.
stem
(
x
)
x
=
self
.
max_pool
(
x
)
x
=
self
.
blocks
(
x
)
x
=
self
.
avg_pool
(
x
)
x
=
paddle
.
reshape
(
x
,
shape
=
[
-
1
,
self
.
avg_pool_channels
])
x
=
self
.
fc
(
x
)
return
x
def
ResNet18
(
**
args
):
"""
ResNet18
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet18` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"18"
],
version
=
"vb"
,
**
args
)
if
isinstance
(
model
.
pretrained
,
bool
):
if
model
.
pretrained
is
True
:
load_dygraph_pretrain_from_url
(
model
,
MODEL_URLS
[
"ResNet18"
])
elif
isinstance
(
model
.
pretrained
,
str
):
load_dygraph_pretrain
(
model
,
model
.
pretrained
)
else
:
raise
RuntimeError
(
"pretrained type is not available. Please use `string` or `boolean` type"
)
return
model
def
ResNet18_vd
(
**
args
):
"""
ResNet18_vd
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet18_vd` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"18"
],
version
=
"vd"
,
**
args
)
if
isinstance
(
model
.
pretrained
,
bool
):
if
model
.
pretrained
is
True
:
load_dygraph_pretrain_from_url
(
model
,
MODEL_URLS
[
"ResNet18_vd"
])
elif
isinstance
(
model
.
pretrained
,
str
):
load_dygraph_pretrain
(
model
,
model
.
pretrained
)
else
:
raise
RuntimeError
(
"pretrained type is not available. Please use `string` or `boolean` type"
)
return
model
def
ResNet34
(
**
args
):
"""
ResNet34
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet34` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"34"
],
version
=
"vb"
,
**
args
)
if
isinstance
(
model
.
pretrained
,
bool
):
if
model
.
pretrained
is
True
:
load_dygraph_pretrain_from_url
(
model
,
MODEL_URLS
[
"ResNet34"
])
elif
isinstance
(
model
.
pretrained
,
str
):
load_dygraph_pretrain
(
model
,
model
.
pretrained
)
else
:
raise
RuntimeError
(
"pretrained type is not available. Please use `string` or `boolean` type"
)
return
model
def
ResNet34_vd
(
**
args
):
"""
ResNet34_vd
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet34_vd` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"34"
],
version
=
"vd"
,
**
args
)
if
isinstance
(
model
.
pretrained
,
bool
):
if
model
.
pretrained
is
True
:
load_dygraph_pretrain_from_url
(
model
,
MODEL_URLS
[
"ResNet34_vd"
],
use_ssld
=
True
)
elif
isinstance
(
model
.
pretrained
,
str
):
load_dygraph_pretrain
(
model
,
model
.
pretrained
)
else
:
raise
RuntimeError
(
"pretrained type is not available. Please use `string` or `boolean` type"
)
return
model
def
ResNet50
(
**
args
):
"""
ResNet50
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet50` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"50"
],
version
=
"vb"
,
**
args
)
if
isinstance
(
model
.
pretrained
,
bool
):
if
model
.
pretrained
is
True
:
load_dygraph_pretrain_from_url
(
model
,
MODEL_URLS
[
"ResNet50"
])
elif
isinstance
(
model
.
pretrained
,
str
):
load_dygraph_pretrain
(
model
,
model
.
pretrained
)
else
:
raise
RuntimeError
(
"pretrained type is not available. Please use `string` or `boolean` type"
)
return
model
def
ResNet50_vd
(
**
args
):
"""
ResNet50_vd
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet50_vd` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"50"
],
version
=
"vd"
,
**
args
)
if
isinstance
(
model
.
pretrained
,
bool
):
if
model
.
pretrained
is
True
:
load_dygraph_pretrain_from_url
(
model
,
MODEL_URLS
[
"ResNet50_vd"
],
use_ssld
=
True
)
elif
isinstance
(
model
.
pretrained
,
str
):
load_dygraph_pretrain
(
model
,
model
.
pretrained
)
else
:
raise
RuntimeError
(
"pretrained type is not available. Please use `string` or `boolean` type"
)
return
model
def
ResNet101
(
**
args
):
"""
ResNet101
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet101` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"101"
],
version
=
"vb"
,
**
args
)
if
isinstance
(
model
.
pretrained
,
bool
):
if
model
.
pretrained
is
True
:
load_dygraph_pretrain_from_url
(
model
,
MODEL_URLS
[
"ResNet101"
])
elif
isinstance
(
model
.
pretrained
,
str
):
load_dygraph_pretrain
(
model
,
model
.
pretrained
)
else
:
raise
RuntimeError
(
"pretrained type is not available. Please use `string` or `boolean` type"
)
return
model
def
ResNet101_vd
(
**
args
):
"""
ResNet101_vd
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet101_vd` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"101"
],
version
=
"vd"
,
**
args
)
if
isinstance
(
model
.
pretrained
,
bool
):
if
model
.
pretrained
is
True
:
load_dygraph_pretrain_from_url
(
model
,
MODEL_URLS
[
"ResNet101_vd"
],
use_ssld
=
True
)
elif
isinstance
(
model
.
pretrained
,
str
):
load_dygraph_pretrain
(
model
,
model
.
pretrained
)
else
:
raise
RuntimeError
(
"pretrained type is not available. Please use `string` or `boolean` type"
)
return
model
def
ResNet152
(
**
args
):
"""
ResNet152
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet152` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"152"
],
version
=
"vb"
,
**
args
)
if
isinstance
(
model
.
pretrained
,
bool
):
if
model
.
pretrained
is
True
:
load_dygraph_pretrain_from_url
(
model
,
MODEL_URLS
[
"ResNet152"
])
elif
isinstance
(
model
.
pretrained
,
str
):
load_dygraph_pretrain
(
model
,
model
.
pretrained
)
else
:
raise
RuntimeError
(
"pretrained type is not available. Please use `string` or `boolean` type"
)
return
model
def
ResNet152_vd
(
**
args
):
"""
ResNet152_vd
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet152_vd` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"152"
],
version
=
"vd"
,
**
args
)
if
isinstance
(
model
.
pretrained
,
bool
):
if
model
.
pretrained
is
True
:
load_dygraph_pretrain_from_url
(
model
,
MODEL_URLS
[
"ResNet152_vd"
])
elif
isinstance
(
model
.
pretrained
,
str
):
load_dygraph_pretrain
(
model
,
model
.
pretrained
)
else
:
raise
RuntimeError
(
"pretrained type is not available. Please use `string` or `boolean` type"
)
return
model
def
ResNet200_vd
(
**
args
):
"""
ResNet200_vd
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet200_vd` model depends on args.
"""
model
=
ResNet
(
config
=
NET_CONFIG
[
"200"
],
version
=
"vd"
,
**
args
)
if
isinstance
(
model
.
pretrained
,
bool
):
if
model
.
pretrained
is
True
:
load_dygraph_pretrain_from_url
(
model
,
MODEL_URLS
[
"ResNet200_vd"
],
use_ssld
=
True
)
elif
isinstance
(
model
.
pretrained
,
str
):
load_dygraph_pretrain
(
model
,
model
.
pretrained
)
else
:
raise
RuntimeError
(
"pretrained type is not available. Please use `string` or `boolean` type"
)
return
model
ppcls/utils/save_load.py
浏览文件 @
decdb51b
...
...
@@ -24,6 +24,7 @@ import tempfile
import
paddle
from
paddle.static
import
load_program_state
from
paddle.utils.download
import
get_weights_path_from_url
from
ppcls.utils
import
logger
...
...
@@ -70,6 +71,14 @@ def load_dygraph_pretrain(model, path=None, load_static_weights=False):
return
def
load_dygraph_pretrain_from_url
(
model
,
pretrained_url
,
use_ssld
,
load_static_weights
=
False
):
if
use_ssld
:
pretrained_url
=
pretrained_url
.
replace
(
"_pretrained"
,
"_ssld_pretrained"
)
local_weight_path
=
get_weights_path_from_url
(
pretrained_url
).
replace
(
".pdparams"
,
""
)
load_dygraph_pretrain
(
model
,
path
=
local_weight_path
,
load_static_weights
=
load_static_weights
)
return
def
load_distillation_model
(
model
,
pretrained_model
,
load_static_weights
):
logger
.
info
(
"In distillation mode, teacher model will be "
"loaded firstly before student model."
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录