未验证 提交 decdb51b 编写于 作者: W Walter 提交者: GitHub

Merge pull request #742 from cuicheng01/develop_reg

Add resnet.py in legendary_models
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
import math
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
from ppcls.utils.save_load import load_dygraph_pretrain_from, load_dygraph_pretrain_from_url
MODEL_URLS = {
"ResNet18": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams",
"ResNet18_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams",
"ResNet34": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams",
"ResNet34_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_pretrained.pdparams",
"ResNet50": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_pretrained.pdparams",
"ResNet50_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams",
"ResNet101": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_pretrained.pdparams",
"ResNet101_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_pretrained.pdparams",
"ResNet152": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_pretrained.pdparams",
"ResNet152_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_vd_pretrained.pdparams",
"ResNet200_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet200_vd_pretrained.pdparams",
}
__all__ = MODEL_URLS.keys()
'''
ResNet config: dict.
key: depth of ResNet.
values: config's dict of specific model.
keys:
block_type: Two different blocks in ResNet, BasicBlock and BottleneckBlock are optional.
block_depth: The number of blocks in different stages in ResNet.
num_channels: The number of channels to enter the next stage.
'''
NET_CONFIG = {
"18": {
"block_type": "BasicBlock", "block_depth": [2, 2, 2, 2], "num_channels": [64, 64, 128, 256]},
"34": {
"block_type": "BasicBlock", "block_depth": [3, 4, 6, 3], "num_channels": [64, 64, 128, 256]},
"50": {
"block_type": "BottleneckBlock", "block_depth": [3, 4, 6, 3], "num_channels": [64, 256, 512, 1024]},
"101": {
"block_type": "BottleneckBlock", "block_depth": [3, 4, 23, 3], "num_channels": [64, 256, 512, 1024]},
"152": {
"block_type": "BottleneckBlock", "block_depth": [3, 8, 36, 3], "num_channels": [64, 256, 512, 1024]},
"200": {
"block_type": "BottleneckBlock", "block_depth": [3, 12, 48, 3], "num_channels": [64, 256, 512, 1024]},
}
class ConvBNLayer(TheseusLayer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
is_vd_mode=False,
act=None,
lr_mult=1.0):
super().__init__()
self.is_vd_mode = is_vd_mode
self.act = act
self.avg_pool = AvgPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
self.conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(learning_rate=lr_mult),
bias_attr=False)
self.bn = BatchNorm(
num_filters,
param_attr=ParamAttr(learning_rate=lr_mult),
bias_attr=ParamAttr(learning_rate=lr_mult))
self.relu = nn.ReLU()
def forward(self, x):
if self.is_vd_mode:
x = self.avg_pool(x)
x = self.conv(x)
x = self.bn(x)
if self.act:
x = self.relu(x)
return x
class BottleneckBlock(TheseusLayer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True,
if_first=False,
lr_mult=1.0,
):
super().__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act="relu",
lr_mult=lr_mult)
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act="relu",
lr_mult=lr_mult)
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None,
lr_mult=lr_mult)
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
stride=stride if if_first else 1,
is_vd_mode=False if if_first else True,
lr_mult=lr_mult)
self.relu = nn.ReLU()
self.shortcut = shortcut
def forward(self, x):
identity = x
x = self.conv0(x)
x = self.conv1(x)
x = self.conv2(x)
if self.shortcut:
short = identity
else:
short = self.short(identity)
x = paddle.add(x=x, y=short)
x = self.relu(x)
return x
class BasicBlock(TheseusLayer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True,
if_first=False,
lr_mult=1.0):
super().__init__()
self.stride = stride
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=3,
stride=stride,
act="relu",
lr_mult=lr_mult)
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
act=None,
lr_mult=lr_mult)
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
stride=stride if if_first else 1,
is_vd_mode=False if if_first else True,
lr_mult=lr_mult)
self.shortcut = shortcut
self.relu = nn.ReLU()
def forward(self, x):
identity = x
x = self.conv0(x)
x = self.conv1(x)
if self.shortcut:
short = identity
else:
short = self.short(identity)
x = paddle.add(x=x, y=short)
x = self.relu(x)
return x
class ResNet(TheseusLayer):
"""
ResNet
Args:
config: dict. config of ResNet.
version: str="vb". Different version of ResNet, version vd can perform better.
class_num: int=1000. The number of classes.
lr_mult_list: list. Control the learning rate of different stages.
pretrained: (True or False) or path of pretrained_model. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific ResNet model depends on args.
"""
def __init__(self,
config,
version="vb",
class_num=1000,
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
pretrained=False):
super().__init__()
self.cfg = config
self.lr_mult_list = lr_mult_list
self.is_vd_mode = version == "vd"
self.class_num = class_num
self.num_filters = [64, 128, 256, 512]
self.block_depth = self.cfg["block_depth"]
self.block_type = self.cfg["block_type"]
self.num_channels = self.cfg["num_channels"]
self.channels_mult = 1 if self.num_channels[-1] == 256 else 4
self.pretrained = pretrained
assert isinstance(self.lr_mult_list, (
list, tuple
)), "lr_mult_list should be in (list, tuple) but got {}".format(
type(self.lr_mult_list))
assert len(
self.lr_mult_list
) == 5, "lr_mult_list length should be 5 but got {}".format(
len(self.lr_mult_list))
self.stem_cfg = {
#num_channels, num_filters, filter_size, stride
"vb": [[3, 64, 7, 2]],
"vd": [[3, 32, 3, 2],
[32, 32, 3, 1],
[32, 64, 3, 1]]}
self.stem = nn.Sequential(*[
ConvBNLayer(
num_channels=in_c,
num_filters=out_c,
filter_size=k,
stride=s,
act="relu",
lr_mult=self.lr_mult_list[0])
for in_c, out_c, k, s in self.stem_cfg[version]
])
self.max_pool = MaxPool2D(kernel_size=3, stride=2, padding=1)
block_list = []
for block_idx in range(len(self.block_depth)):
shortcut = False
for i in range(self.block_depth[block_idx]):
block_list.append(
globals()[self.block_type](
num_channels=self.num_channels[block_idx]
if i == 0 else self.num_filters[block_idx] * self.channels_mult,
num_filters=self.num_filters[block_idx],
stride=2 if i == 0 and block_idx != 0 else 1,
shortcut=shortcut,
if_first=block_idx == i == 0 if version == "vd" else True,
lr_mult=self.lr_mult_list[block_idx + 1]))
shortcut = True
self.blocks = nn.Sequential(*block_list)
self.avg_pool = AdaptiveAvgPool2D(1)
self.avg_pool_channels = self.num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.avg_pool_channels * 1.0)
self.fc = Linear(
self.avg_pool_channels,
self.class_num,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv)))
def forward(self, x):
x = self.stem(x)
x = self.max_pool(x)
x = self.blocks(x)
x = self.avg_pool(x)
x = paddle.reshape(x, shape=[-1, self.avg_pool_channels])
x = self.fc(x)
return x
def ResNet18(**args):
"""
ResNet18
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet18` model depends on args.
"""
model = ResNet(config=NET_CONFIG["18"], version="vb", **args)
if isinstance(model.pretrained, bool):
if model.pretrained is True:
load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet18"])
elif isinstance(model.pretrained, str):
load_dygraph_pretrain(model, model.pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type")
return model
def ResNet18_vd(**args):
"""
ResNet18_vd
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet18_vd` model depends on args.
"""
model = ResNet(config=NET_CONFIG["18"], version="vd", **args)
if isinstance(model.pretrained, bool):
if model.pretrained is True:
load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet18_vd"])
elif isinstance(model.pretrained, str):
load_dygraph_pretrain(model, model.pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type")
return model
def ResNet34(**args):
"""
ResNet34
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet34` model depends on args.
"""
model = ResNet(config=NET_CONFIG["34"], version="vb", **args)
if isinstance(model.pretrained, bool):
if model.pretrained is True:
load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet34"])
elif isinstance(model.pretrained, str):
load_dygraph_pretrain(model, model.pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type")
return model
def ResNet34_vd(**args):
"""
ResNet34_vd
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet34_vd` model depends on args.
"""
model = ResNet(config=NET_CONFIG["34"], version="vd", **args)
if isinstance(model.pretrained, bool):
if model.pretrained is True:
load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet34_vd"], use_ssld=True)
elif isinstance(model.pretrained, str):
load_dygraph_pretrain(model, model.pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type")
return model
def ResNet50(**args):
"""
ResNet50
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet50` model depends on args.
"""
model = ResNet(config=NET_CONFIG["50"], version="vb", **args)
if isinstance(model.pretrained, bool):
if model.pretrained is True:
load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet50"])
elif isinstance(model.pretrained, str):
load_dygraph_pretrain(model, model.pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type")
return model
def ResNet50_vd(**args):
"""
ResNet50_vd
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet50_vd` model depends on args.
"""
model = ResNet(config=NET_CONFIG["50"], version="vd", **args)
if isinstance(model.pretrained, bool):
if model.pretrained is True:
load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet50_vd"], use_ssld=True)
elif isinstance(model.pretrained, str):
load_dygraph_pretrain(model, model.pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type")
return model
def ResNet101(**args):
"""
ResNet101
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet101` model depends on args.
"""
model = ResNet(config=NET_CONFIG["101"], version="vb", **args)
if isinstance(model.pretrained, bool):
if model.pretrained is True:
load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet101"])
elif isinstance(model.pretrained, str):
load_dygraph_pretrain(model, model.pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type")
return model
def ResNet101_vd(**args):
"""
ResNet101_vd
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet101_vd` model depends on args.
"""
model = ResNet(config=NET_CONFIG["101"], version="vd", **args)
if isinstance(model.pretrained, bool):
if model.pretrained is True:
load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet101_vd"], use_ssld=True)
elif isinstance(model.pretrained, str):
load_dygraph_pretrain(model, model.pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type")
return model
def ResNet152(**args):
"""
ResNet152
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet152` model depends on args.
"""
model = ResNet(config=NET_CONFIG["152"], version="vb", **args)
if isinstance(model.pretrained, bool):
if model.pretrained is True:
load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet152"])
elif isinstance(model.pretrained, str):
load_dygraph_pretrain(model, model.pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type")
return model
def ResNet152_vd(**args):
"""
ResNet152_vd
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet152_vd` model depends on args.
"""
model = ResNet(config=NET_CONFIG["152"], version="vd", **args)
if isinstance(model.pretrained, bool):
if model.pretrained is True:
load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet152_vd"])
elif isinstance(model.pretrained, str):
load_dygraph_pretrain(model, model.pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type")
return model
def ResNet200_vd(**args):
"""
ResNet200_vd
Args:
kwargs:
class_num: int=1000. Output dim of last fc layer.
lr_mult_list: list=[1.0, 1.0, 1.0, 1.0, 1.0]. Control the learning rate of different stages.
pretrained: bool or str, default: bool=False. Whether to load the pretrained model.
Returns:
model: nn.Layer. Specific `ResNet200_vd` model depends on args.
"""
model = ResNet(config=NET_CONFIG["200"], version="vd", **args)
if isinstance(model.pretrained, bool):
if model.pretrained is True:
load_dygraph_pretrain_from_url(model, MODEL_URLS["ResNet200_vd"], use_ssld=True)
elif isinstance(model.pretrained, str):
load_dygraph_pretrain(model, model.pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type")
return model
...@@ -24,6 +24,7 @@ import tempfile ...@@ -24,6 +24,7 @@ import tempfile
import paddle import paddle
from paddle.static import load_program_state from paddle.static import load_program_state
from paddle.utils.download import get_weights_path_from_url
from ppcls.utils import logger from ppcls.utils import logger
...@@ -70,6 +71,14 @@ def load_dygraph_pretrain(model, path=None, load_static_weights=False): ...@@ -70,6 +71,14 @@ def load_dygraph_pretrain(model, path=None, load_static_weights=False):
return return
def load_dygraph_pretrain_from_url(model, pretrained_url, use_ssld, load_static_weights=False):
if use_ssld:
pretrained_url = pretrained_url.replace("_pretrained", "_ssld_pretrained")
local_weight_path = get_weights_path_from_url(pretrained_url).replace(".pdparams", "")
load_dygraph_pretrain(model, path=local_weight_path, load_static_weights=load_static_weights)
return
def load_distillation_model(model, pretrained_model, load_static_weights): def load_distillation_model(model, pretrained_model, load_static_weights):
logger.info("In distillation mode, teacher model will be " logger.info("In distillation mode, teacher model will be "
"loaded firstly before student model.") "loaded firstly before student model.")
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册