提交 de4ebabf 编写于 作者: littletomatodonkey's avatar littletomatodonkey

remove unused files

上级 03bbd585
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
__all__ = [
"CSPResNet50_leaky", "CSPResNet50_mish", "CSPResNet101_leaky",
"CSPResNet101_mish"
]
class CSPResNet():
def __init__(self, layers=50, act="leaky_relu"):
self.layers = layers
self.act = act
def net(self, input, class_dim=1000, data_format="NCHW"):
layers = self.layers
supported_layers = [50, 101]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
if layers == 50:
depth = [3, 3, 5, 2]
elif layers == 101:
depth = [3, 3, 22, 2]
num_filters = [64, 128, 256, 512]
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act=self.act,
name="conv1",
data_format=data_format)
conv = fluid.layers.pool2d(
input=conv,
pool_size=2,
pool_stride=2,
pool_padding=0,
pool_type='max',
data_format=data_format)
for block in range(len(depth)):
conv_name = "res" + str(block + 2) + chr(97)
if block != 0:
conv = self.conv_bn_layer(
input=conv,
num_filters=num_filters[block],
filter_size=3,
stride=2,
act=self.act,
name=conv_name + "_downsample",
data_format=data_format)
# split
left = conv
right = conv
if block == 0:
ch = num_filters[block]
else:
ch = num_filters[block] * 2
right = self.conv_bn_layer(
input=right,
num_filters=ch,
filter_size=1,
act=self.act,
name=conv_name + "_right_first_route",
data_format=data_format)
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
right = self.bottleneck_block(
input=right,
num_filters=num_filters[block],
stride=1,
name=conv_name,
data_format=data_format)
# route
left = self.conv_bn_layer(
input=left,
num_filters=num_filters[block] * 2,
filter_size=1,
act=self.act,
name=conv_name + "_left_route",
data_format=data_format)
right = self.conv_bn_layer(
input=right,
num_filters=num_filters[block] * 2,
filter_size=1,
act=self.act,
name=conv_name + "_right_route",
data_format=data_format)
conv = fluid.layers.concat([left, right], axis=1)
conv = self.conv_bn_layer(
input=conv,
num_filters=num_filters[block] * 2,
filter_size=1,
stride=1,
act=self.act,
name=conv_name + "_merged_transition",
data_format=data_format)
pool = fluid.layers.pool2d(
input=conv,
pool_type='avg',
global_pooling=True,
data_format=data_format)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
name="fc_0.w_0",
initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name="fc_0.b_0"))
return out
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None,
data_format='NCHW'):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
name=name + '.conv2d.output.1',
data_format=data_format)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
bn = fluid.layers.batch_norm(
input=conv,
act=None,
name=bn_name + '.output.1',
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance',
data_layout=data_format)
if act == "relu":
bn = fluid.layers.relu(bn)
elif act == "leaky_relu":
bn = fluid.layers.leaky_relu(bn)
elif act == "mish":
bn = self._mish(bn)
return bn
def _mish(self, input):
return input * fluid.layers.tanh(self._softplus(input))
def _softplus(self, input):
expf = fluid.layers.exp(fluid.layers.clip(input, -200, 50))
return fluid.layers.log(1 + expf)
def shortcut(self, input, ch_out, stride, is_first, name, data_format):
if data_format == 'NCHW':
ch_in = input.shape[1]
else:
ch_in = input.shape[-1]
if ch_in != ch_out or stride != 1 or is_first is True:
return self.conv_bn_layer(
input, ch_out, 1, stride, name=name, data_format=data_format)
else:
return input
def bottleneck_block(self, input, num_filters, stride, name, data_format):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=1,
act="leaky_relu",
name=name + "_branch2a",
data_format=data_format)
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
act="leaky_relu",
name=name + "_branch2b",
data_format=data_format)
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters * 2,
filter_size=1,
act=None,
name=name + "_branch2c",
data_format=data_format)
short = self.shortcut(
input,
num_filters * 2,
stride,
is_first=False,
name=name + "_branch1",
data_format=data_format)
ret = short + conv2
ret = fluid.layers.leaky_relu(ret, alpha=0.1)
return ret
def CSPResNet50_leaky():
model = CSPResNet(layers=50, act="leaky_relu")
return model
def CSPResNet50_mish():
model = CSPResNet(layers=50, act="mish")
return model
def CSPResNet101_leaky():
model = CSPResNet(layers=101, act="leaky_relu")
return model
def CSPResNet101_mish():
model = CSPResNet(layers=101, act="mish")
return model
此差异已折叠。
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import warnings
import paddle.fluid as fluid
def initial_type(name,
input,
op_type,
fan_out,
init="google",
use_bias=False,
filter_size=0,
stddev=0.02):
if init == "kaiming":
if op_type == 'conv':
fan_in = input.shape[1] * filter_size * filter_size
elif op_type == 'deconv':
fan_in = fan_out * filter_size * filter_size
else:
if len(input.shape) > 2:
fan_in = input.shape[1] * input.shape[2] * input.shape[3]
else:
fan_in = input.shape[1]
bound = 1 / math.sqrt(fan_in)
param_attr = fluid.ParamAttr(
name=name + "_weights",
initializer=fluid.initializer.Uniform(
low=-bound, high=bound))
if use_bias == True:
bias_attr = fluid.ParamAttr(
name=name + '_offset',
initializer=fluid.initializer.Uniform(
low=-bound, high=bound))
else:
bias_attr = False
elif init == 'google':
n = filter_size * filter_size * fan_out
param_attr = fluid.ParamAttr(
name=name + "_weights",
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=math.sqrt(2.0 / n)))
if use_bias == True:
bias_attr = fluid.ParamAttr(
name=name + "_offset",
initializer=fluid.initializer.Constant(0.0))
else:
bias_attr = False
else:
param_attr = fluid.ParamAttr(
name=name + "_weights",
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=stddev))
if use_bias == True:
bias_attr = fluid.ParamAttr(
name=name + "_offset",
initializer=fluid.initializer.Constant(0.0))
else:
bias_attr = False
return param_attr, bias_attr
def cal_padding(img_size, stride, filter_size, dilation=1):
"""Calculate padding size."""
if img_size % stride == 0:
out_size = max(filter_size - stride, 0)
else:
out_size = max(filter_size - (img_size % stride), 0)
return out_size // 2, out_size - out_size // 2
def init_batch_norm_layer(name="batch_norm"):
param_attr = fluid.ParamAttr(
name=name + '_scale', initializer=fluid.initializer.Constant(1.0))
bias_attr = fluid.ParamAttr(
name=name + '_offset',
initializer=fluid.initializer.Constant(value=0.0))
return param_attr, bias_attr
def init_fc_layer(fout, name='fc'):
n = fout # fan-out
init_range = 1.0 / math.sqrt(n)
param_attr = fluid.ParamAttr(
name=name + '_weights',
initializer=fluid.initializer.UniformInitializer(
low=-init_range, high=init_range))
bias_attr = fluid.ParamAttr(
name=name + '_offset',
initializer=fluid.initializer.Constant(value=0.0))
return param_attr, bias_attr
def norm_layer(input, norm_type='batch_norm', name=None):
if norm_type == 'batch_norm':
param_attr = fluid.ParamAttr(
name=name + '_weights',
initializer=fluid.initializer.Constant(1.0))
bias_attr = fluid.ParamAttr(
name=name + '_offset',
initializer=fluid.initializer.Constant(value=0.0))
return fluid.layers.batch_norm(
input,
param_attr=param_attr,
bias_attr=bias_attr,
moving_mean_name=name + '_mean',
moving_variance_name=name + '_variance')
elif norm_type == 'instance_norm':
helper = fluid.layer_helper.LayerHelper("instance_norm", **locals())
dtype = helper.input_dtype()
epsilon = 1e-5
mean = fluid.layers.reduce_mean(input, dim=[2, 3], keep_dim=True)
var = fluid.layers.reduce_mean(
fluid.layers.square(input - mean), dim=[2, 3], keep_dim=True)
if name is not None:
scale_name = name + "_scale"
offset_name = name + "_offset"
scale_param = fluid.ParamAttr(
name=scale_name,
initializer=fluid.initializer.Constant(1.0),
trainable=True)
offset_param = fluid.ParamAttr(
name=offset_name,
initializer=fluid.initializer.Constant(0.0),
trainable=True)
scale = helper.create_parameter(
attr=scale_param, shape=input.shape[1:2], dtype=dtype)
offset = helper.create_parameter(
attr=offset_param, shape=input.shape[1:2], dtype=dtype)
tmp = fluid.layers.elementwise_mul(x=(input - mean), y=scale, axis=1)
tmp = tmp / fluid.layers.sqrt(var + epsilon)
tmp = fluid.layers.elementwise_add(tmp, offset, axis=1)
return tmp
else:
raise NotImplementedError("norm tyoe: [%s] is not support" % norm_type)
def conv2d(input,
num_filters=64,
filter_size=7,
stride=1,
stddev=0.02,
padding=0,
groups=None,
name="conv2d",
norm=None,
act=None,
relufactor=0.0,
use_bias=False,
padding_type=None,
initial="normal",
use_cudnn=True):
if padding != 0 and padding_type != None:
warnings.warn(
'padding value and padding type are set in the same time, and the final padding width and padding height are computed by padding_type'
)
param_attr, bias_attr = initial_type(
name=name,
input=input,
op_type='conv',
fan_out=num_filters,
init=initial,
use_bias=use_bias,
filter_size=filter_size,
stddev=stddev)
def get_padding(filter_size, stride=1, dilation=1):
padding = ((stride - 1) + dilation * (filter_size - 1)) // 2
return padding
need_crop = False
if padding_type == "SAME":
top_padding, bottom_padding = cal_padding(input.shape[2], stride,
filter_size)
left_padding, right_padding = cal_padding(input.shape[2], stride,
filter_size)
height_padding = bottom_padding
width_padding = right_padding
if top_padding != bottom_padding or left_padding != right_padding:
height_padding = top_padding + stride
width_padding = left_padding + stride
need_crop = True
padding = [height_padding, width_padding]
elif padding_type == "VALID":
height_padding = 0
width_padding = 0
padding = [height_padding, width_padding]
elif padding_type == "DYNAMIC":
padding = get_padding(filter_size, stride)
else:
padding = padding
conv = fluid.layers.conv2d(
input,
num_filters,
filter_size,
groups=groups,
name=name,
stride=stride,
padding=padding,
use_cudnn=use_cudnn,
param_attr=param_attr,
bias_attr=bias_attr)
if need_crop:
conv = conv[:, :, 1:, 1:]
if norm is not None:
conv = norm_layer(input=conv, norm_type=norm, name=name + "_norm")
if act == 'relu':
conv = fluid.layers.relu(conv, name=name + '_relu')
elif act == 'leaky_relu':
conv = fluid.layers.leaky_relu(
conv, alpha=relufactor, name=name + '_leaky_relu')
elif act == 'tanh':
conv = fluid.layers.tanh(conv, name=name + '_tanh')
elif act == 'sigmoid':
conv = fluid.layers.sigmoid(conv, name=name + '_sigmoid')
elif act == 'swish':
conv = fluid.layers.swish(conv, name=name + '_swish')
elif act == None:
conv = conv
else:
raise NotImplementedError("activation: [%s] is not support" % act)
return conv
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册