* 近年来,学术界和工业界广泛关注图像中目标检测任务。PaddleCLS基于SSLD蒸馏方案训练得到的ResNet50_vd预训练模型(ImageNet1k验证集上Top1 Acc为82.39%),结合PaddleDetection中的丰富算子,提供了一种面向服务器端应用的目标检测方案PSS-DET(Practical Server Side Detection)。基于COCO2017目标检测数据集,V100单卡预测速度为为61FPS时,COCO mAP可达41.6%;预测速度为20FPS时,COCO mAP可达47.8%,作为对比,标准的Faster RCNN ResNet50_vd FPN在1x训练策略下,V100单卡模型预测速度为20FPS,COCO mAP为38.3%。
* 近年来,学术界和工业界广泛关注图像中目标检测任务。基于SSLD蒸馏方案训练得到的ResNet50_vd预训练模型(ImageNet1k验证集上Top1 Acc为82.39%),结合PaddleDetection中的丰富算子,飞桨提供了一种面向服务器端实用的目标检测方案PSS-DET(Practical Server Side Detection)。基于COCO2017目标检测数据集,V100单卡预测速度为为61FPS时,COCO mAP可达41.6%;预测速度为20FPS时,COCO mAP可达47.8%。