未验证 提交 dccd7ed9 编写于 作者: W Wei Shengyu 提交者: GitHub

Merge pull request #619 from huangxu96/cp_fp16_training

[Cherry-pick]new usage of amp training. (#564)
......@@ -11,21 +11,23 @@ validate: True
valid_interval: 1
epochs: 120
topk: 5
image_shape: [3, 224, 224]
is_distributed: True
# mixed precision training
use_amp: True
use_pure_fp16: False
multi_precision: False
scale_loss: 128.0
use_dynamic_loss_scaling: True
data_format: "NCHW"
image_shape: [3, 224, 224]
use_dali: True
use_gpu: True
data_format: "NHWC"
image_channel: &image_channel 4
image_shape: [*image_channel, 224, 224]
use_mix: False
ls_epsilon: -1
# mixed precision training
AMP:
scale_loss: 128.0
use_dynamic_loss_scaling: True
use_pure_fp16: &use_pure_fp16 True
LEARNING_RATE:
function: 'Piecewise'
params:
......@@ -37,6 +39,7 @@ OPTIMIZER:
function: 'Momentum'
params:
momentum: 0.9
multi_precision: *use_pure_fp16
regularizer:
function: 'L2'
factor: 0.000100
......@@ -61,6 +64,8 @@ TRAIN:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
output_fp16: *use_pure_fp16
channel_num: *image_channel
- ToCHWImage:
VALID:
......
......@@ -195,14 +195,18 @@ class NormalizeImage(object):
""" normalize image such as substract mean, divide std
"""
def __init__(self, scale=None, mean=None, std=None, order='chw'):
def __init__(self, scale=None, mean=None, std=None, order='chw', output_fp16=False, channel_num=3):
if isinstance(scale, str):
scale = eval(scale)
assert channel_num in [3, 4], "channel number of input image should be set to 3 or 4."
self.channel_num = channel_num
self.output_dtype = 'float16' if output_fp16 else 'float32'
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
self.order = order
mean = mean if mean is not None else [0.485, 0.456, 0.406]
std = std if std is not None else [0.229, 0.224, 0.225]
shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
shape = (3, 1, 1) if self.order == 'chw' else (1, 1, 3)
self.mean = np.array(mean).reshape(shape).astype('float32')
self.std = np.array(std).reshape(shape).astype('float32')
......@@ -213,7 +217,16 @@ class NormalizeImage(object):
assert isinstance(img,
np.ndarray), "invalid input 'img' in NormalizeImage"
return (img.astype('float32') * self.scale - self.mean) / self.std
img = (img.astype('float32') * self.scale - self.mean) / self.std
if self.channel_num == 4:
img_h = img.shape[1] if self.order == 'chw' else img.shape[0]
img_w = img.shape[2] if self.order == 'chw' else img.shape[1]
pad_zeros = np.zeros((1, img_h, img_w)) if self.order == 'chw' else np.zeros((img_h, img_w, 1))
img = (np.concatenate((img, pad_zeros), axis=0) if self.order == 'chw'
else np.concatenate((img, pad_zeros), axis=2))
return img.astype(self.output_dtype)
class ToCHWImage(object):
......
......@@ -277,14 +277,18 @@ class ResNet(nn.Layer):
bias_attr=ParamAttr(name="fc_0.b_0"))
def forward(self, inputs):
y = self.conv(inputs)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
with paddle.static.amp.fp16_guard():
if self.data_format == "NHWC":
inputs = paddle.tensor.transpose(inputs, [0, 2, 3, 1])
inputs.stop_gradient = True
y = self.conv(inputs)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
def ResNet18(**args):
......
......@@ -42,17 +42,14 @@ class Loss(object):
soft_target = paddle.reshape(soft_target, shape=[-1, self._class_dim])
return soft_target
def _crossentropy(self, input, target, use_pure_fp16=False):
def _crossentropy(self, input, target):
if self._label_smoothing:
target = self._labelsmoothing(target)
input = -F.log_softmax(input, axis=-1)
cost = paddle.sum(target * input, axis=-1)
else:
cost = F.cross_entropy(input=input, label=target)
if use_pure_fp16:
avg_cost = paddle.sum(cost)
else:
avg_cost = paddle.mean(cost)
avg_cost = paddle.mean(cost)
return avg_cost
def _kldiv(self, input, target, name=None):
......@@ -81,8 +78,8 @@ class CELoss(Loss):
def __init__(self, class_dim=1000, epsilon=None):
super(CELoss, self).__init__(class_dim, epsilon)
def __call__(self, input, target, use_pure_fp16=False):
cost = self._crossentropy(input, target, use_pure_fp16)
def __call__(self, input, target):
cost = self._crossentropy(input, target)
return cost
......@@ -94,14 +91,11 @@ class MixCELoss(Loss):
def __init__(self, class_dim=1000, epsilon=None):
super(MixCELoss, self).__init__(class_dim, epsilon)
def __call__(self, input, target0, target1, lam, use_pure_fp16=False):
cost0 = self._crossentropy(input, target0, use_pure_fp16)
cost1 = self._crossentropy(input, target1, use_pure_fp16)
def __call__(self, input, target0, target1, lam):
cost0 = self._crossentropy(input, target0)
cost1 = self._crossentropy(input, target1)
cost = lam * cost0 + (1.0 - lam) * cost1
if use_pure_fp16:
avg_cost = paddle.sum(cost)
else:
avg_cost = paddle.mean(cost)
avg_cost = paddle.mean(cost)
return avg_cost
......
......@@ -74,19 +74,22 @@ class Momentum(object):
momentum,
parameter_list=None,
regularization=None,
multi_precision=False,
**args):
super(Momentum, self).__init__()
self.learning_rate = learning_rate
self.momentum = momentum
self.parameter_list = parameter_list
self.regularization = regularization
self.multi_precision = multi_precision
def __call__(self):
opt = paddle.optimizer.Momentum(
learning_rate=self.learning_rate,
momentum=self.momentum,
parameters=self.parameter_list,
weight_decay=self.regularization)
weight_decay=self.regularization,
multi_precision=self.multi_precision)
return opt
......
......@@ -176,7 +176,11 @@ def build(config, mode='train'):
2: types.INTERP_CUBIC, # cv2.INTER_CUBIC
4: types.INTERP_LANCZOS3, # XXX use LANCZOS3 for cv2.INTER_LANCZOS4
}
output_dtype = types.FLOAT16 if config.get("use_pure_fp16", False) else types.FLOAT
output_dtype = (types.FLOAT16 if 'AMP' in config and
config.AMP.get("use_pure_fp16", False)
else types.FLOAT)
assert interp in interp_map, "interpolation method not supported by DALI"
interp = interp_map[interp]
pad_output = False
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import paddle
import paddle.fluid as fluid
import paddle.regularizer as regularizer
__all__ = ['OptimizerBuilder']
class L1Decay(object):
"""
L1 Weight Decay Regularization, which encourages the weights to be sparse.
Args:
factor(float): regularization coeff. Default:0.0.
"""
def __init__(self, factor=0.0):
super(L1Decay, self).__init__()
self.factor = factor
def __call__(self):
reg = regularizer.L1Decay(self.factor)
return reg
class L2Decay(object):
"""
L2 Weight Decay Regularization, which encourages the weights to be sparse.
Args:
factor(float): regularization coeff. Default:0.0.
"""
def __init__(self, factor=0.0):
super(L2Decay, self).__init__()
self.factor = factor
def __call__(self):
reg = regularizer.L2Decay(self.factor)
return reg
class Momentum(object):
"""
Simple Momentum optimizer with velocity state.
Args:
learning_rate (float|Variable) - The learning rate used to update parameters.
Can be a float value or a Variable with one float value as data element.
momentum (float) - Momentum factor.
regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
"""
def __init__(self,
learning_rate,
momentum,
parameter_list=None,
regularization=None,
config=None,
**args):
super(Momentum, self).__init__()
self.learning_rate = learning_rate
self.momentum = momentum
self.parameter_list = parameter_list
self.regularization = regularization
self.multi_precision = config.get('multi_precision', False)
self.rescale_grad = (1.0 / (config['TRAIN']['batch_size'] / len(fluid.cuda_places()))
if config.get('use_pure_fp16', False) else 1.0)
def __call__(self):
opt = fluid.contrib.optimizer.Momentum(
learning_rate=self.learning_rate,
momentum=self.momentum,
regularization=self.regularization,
multi_precision=self.multi_precision,
rescale_grad=self.rescale_grad)
return opt
class RMSProp(object):
"""
Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
Args:
learning_rate (float|Variable) - The learning rate used to update parameters.
Can be a float value or a Variable with one float value as data element.
momentum (float) - Momentum factor.
rho (float) - rho value in equation.
epsilon (float) - avoid division by zero, default is 1e-6.
regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
"""
def __init__(self,
learning_rate,
momentum,
rho=0.95,
epsilon=1e-6,
parameter_list=None,
regularization=None,
**args):
super(RMSProp, self).__init__()
self.learning_rate = learning_rate
self.momentum = momentum
self.rho = rho
self.epsilon = epsilon
self.parameter_list = parameter_list
self.regularization = regularization
def __call__(self):
opt = paddle.optimizer.RMSProp(
learning_rate=self.learning_rate,
momentum=self.momentum,
rho=self.rho,
epsilon=self.epsilon,
parameters=self.parameter_list,
weight_decay=self.regularization)
return opt
class OptimizerBuilder(object):
"""
Build optimizer
Args:
function(str): optimizer name of learning rate
params(dict): parameters used for init the class
regularizer (dict): parameters used for create regularization
"""
def __init__(self,
config=None,
function='Momentum',
params={'momentum': 0.9},
regularizer=None):
self.function = function
self.params = params
self.config = config
# create regularizer
if regularizer is not None:
mod = sys.modules[__name__]
reg_func = regularizer['function'] + 'Decay'
del regularizer['function']
reg = getattr(mod, reg_func)(**regularizer)()
self.params['regularization'] = reg
def __call__(self, learning_rate, parameter_list=None):
mod = sys.modules[__name__]
opt = getattr(mod, self.function)
return opt(learning_rate=learning_rate,
parameter_list=parameter_list,
config=self.config,
**self.params)()
......@@ -21,12 +21,10 @@ import time
import numpy as np
from collections import OrderedDict
from optimizer import OptimizerBuilder
from ppcls.optimizer import OptimizerBuilder
import paddle
import paddle.nn.functional as F
from paddle import fluid
from paddle.fluid.contrib.mixed_precision.fp16_utils import cast_model_to_fp16
from ppcls.optimizer.learning_rate import LearningRateBuilder
from ppcls.modeling import architectures
......@@ -83,11 +81,9 @@ def create_model(architecture, image, classes_num, config, is_train):
Returns:
out(variable): model output variable
"""
use_pure_fp16 = config.get("use_pure_fp16", False)
name = architecture["name"]
params = architecture.get("params", {})
data_format = "NCHW"
if "data_format" in config:
params["data_format"] = config["data_format"]
data_format = config["data_format"]
......@@ -100,16 +96,8 @@ def create_model(architecture, image, classes_num, config, is_train):
if "is_test" in params:
params['is_test'] = not is_train
model = architectures.__dict__[name](class_dim=classes_num, **params)
if use_pure_fp16 and not config.get("use_dali", False):
image = image.astype('float16')
if data_format == "NHWC":
image = paddle.tensor.transpose(image, [0, 2, 3, 1])
image.stop_gradient = True
out = model(image)
if config.get("use_pure_fp16", False):
cast_model_to_fp16(paddle.static.default_main_program())
out = out.astype('float32')
return out
......@@ -119,8 +107,7 @@ def create_loss(out,
classes_num=1000,
epsilon=None,
use_mix=False,
use_distillation=False,
use_pure_fp16=False):
use_distillation=False):
"""
Create a loss for optimization, such as:
1. CrossEnotry loss
......@@ -137,7 +124,6 @@ def create_loss(out,
classes_num(int): num of classes
epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
use_pure_fp16(bool): whether to use pure fp16 data as training parameter
Returns:
loss(variable): loss variable
......@@ -162,10 +148,10 @@ def create_loss(out,
if use_mix:
loss = MixCELoss(class_dim=classes_num, epsilon=epsilon)
return loss(out, feed_y_a, feed_y_b, feed_lam, use_pure_fp16)
return loss(out, feed_y_a, feed_y_b, feed_lam)
else:
loss = CELoss(class_dim=classes_num, epsilon=epsilon)
return loss(out, target, use_pure_fp16)
return loss(out, target)
def create_metric(out,
......@@ -239,9 +225,8 @@ def create_fetchs(out,
fetchs(dict): dict of model outputs(included loss and measures)
"""
fetchs = OrderedDict()
use_pure_fp16 = config.get("use_pure_fp16", False)
loss = create_loss(out, feeds, architecture, classes_num, epsilon, use_mix,
use_distillation, use_pure_fp16)
use_distillation)
fetchs['loss'] = (loss, AverageMeter('loss', '7.4f', need_avg=True))
if not use_mix:
metric = create_metric(out, feeds, architecture, topk, classes_num,
......@@ -285,7 +270,7 @@ def create_optimizer(config):
# create optimizer instance
opt_config = config['OPTIMIZER']
opt = OptimizerBuilder(config, **opt_config)
opt = OptimizerBuilder(**opt_config)
return opt(lr), lr
......@@ -304,11 +289,11 @@ def create_strategy(config):
exec_strategy = paddle.static.ExecutionStrategy()
exec_strategy.num_threads = 1
exec_strategy.num_iteration_per_drop_scope = 10000 if config.get(
'use_pure_fp16', False) else 10
exec_strategy.num_iteration_per_drop_scope = (10000 if 'AMP' in config and
config.AMP.get("use_pure_fp16", False) else 10)
fuse_op = True if 'AMP' in config else False
fuse_op = config.get('use_amp', False) or config.get('use_pure_fp16',
False)
fuse_bn_act_ops = config.get('fuse_bn_act_ops', fuse_op)
fuse_elewise_add_act_ops = config.get('fuse_elewise_add_act_ops', fuse_op)
fuse_bn_add_act_ops = config.get('fuse_bn_add_act_ops', fuse_op)
......@@ -369,14 +354,17 @@ def dist_optimizer(config, optimizer):
def mixed_precision_optimizer(config, optimizer):
use_amp = config.get('use_amp', False)
scale_loss = config.get('scale_loss', 1.0)
use_dynamic_loss_scaling = config.get('use_dynamic_loss_scaling', False)
if use_amp:
optimizer = fluid.contrib.mixed_precision.decorate(
if 'AMP' in config:
amp_cfg = config.AMP if config.AMP else dict()
scale_loss = amp_cfg.get('scale_loss', 1.0)
use_dynamic_loss_scaling = amp_cfg.get('use_dynamic_loss_scaling', False)
use_pure_fp16 = amp_cfg.get('use_pure_fp16', False)
optimizer = paddle.static.amp.decorate(
optimizer,
init_loss_scaling=scale_loss,
use_dynamic_loss_scaling=use_dynamic_loss_scaling)
use_dynamic_loss_scaling=use_dynamic_loss_scaling,
use_pure_fp16=use_pure_fp16,
use_fp16_guard=True)
return optimizer
......@@ -407,15 +395,11 @@ def build(config, main_prog, startup_prog, is_train=True, is_distributed=True):
use_dali = config.get('use_dali', False)
use_distillation = config.get('use_distillation')
image_dtype = "float32"
if config["ARCHITECTURE"]["name"] == "ResNet50" and config.get("use_pure_fp16", False) \
and config.get("use_dali", False):
image_dtype = "float16"
feeds = create_feeds(
config.image_shape,
use_mix=use_mix,
use_dali=use_dali,
dtype=image_dtype)
dtype="float32")
if use_dali and use_mix:
import dali
feeds = dali.mix(feeds, config, is_train)
......@@ -432,13 +416,14 @@ def build(config, main_prog, startup_prog, is_train=True, is_distributed=True):
config=config,
use_distillation=use_distillation)
lr_scheduler = None
optimizer = None
if is_train:
optimizer, lr_scheduler = create_optimizer(config)
optimizer = mixed_precision_optimizer(config, optimizer)
if is_distributed:
optimizer = dist_optimizer(config, optimizer)
optimizer.minimize(fetchs['loss'][0])
return fetchs, lr_scheduler, feeds
return fetchs, lr_scheduler, feeds, optimizer
def compile(config, program, loss_name=None, share_prog=None):
......
......@@ -26,8 +26,6 @@ sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))
from sys import version_info
import paddle
import paddle.fluid as fluid
from paddle.fluid.contrib.mixed_precision.fp16_utils import cast_parameters_to_fp16
from paddle.distributed import fleet
from ppcls.data import Reader
......@@ -67,9 +65,7 @@ def main(args):
# assign the place
use_gpu = config.get("use_gpu", True)
# amp related config
use_amp = config.get('use_amp', False)
use_pure_fp16 = config.get('use_pure_fp16', False)
if use_amp or use_pure_fp16:
if 'AMP' in config:
AMP_RELATED_FLAGS_SETTING = {
'FLAGS_cudnn_exhaustive_search': 1,
'FLAGS_conv_workspace_size_limit': 1500,
......@@ -97,7 +93,7 @@ def main(args):
best_top1_acc = 0.0 # best top1 acc record
train_fetchs, lr_scheduler, train_feeds = program.build(
train_fetchs, lr_scheduler, train_feeds, optimizer = program.build(
config,
train_prog,
startup_prog,
......@@ -106,7 +102,7 @@ def main(args):
if config.validate:
valid_prog = paddle.static.Program()
valid_fetchs, _, valid_feeds = program.build(
valid_fetchs, _, valid_feeds, _ = program.build(
config,
valid_prog,
startup_prog,
......@@ -119,11 +115,14 @@ def main(args):
exe = paddle.static.Executor(place)
# Parameter initialization
exe.run(startup_prog)
if config.get("use_pure_fp16", False):
cast_parameters_to_fp16(place, train_prog, fluid.global_scope())
# load pretrained models or checkpoints
init_model(config, train_prog, exe)
if 'AMP' in config and config.AMP.get("use_pure_fp16", False):
optimizer.amp_init(place,
scope=paddle.static.global_scope(),
test_program=valid_prog if config.validate else None)
if not config.get("is_distributed", True) and not use_xpu:
compiled_train_prog = program.compile(
config, train_prog, loss_name=train_fetchs["loss"][0].name)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册