Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
db6d9816
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
db6d9816
编写于
5月 07, 2020
作者:
littletomatodonkey
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add serving doc and demo
上级
0f27cccc
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
392 addition
and
1 deletion
+392
-1
docs/zh_CN/extension/paddle_serving.md
docs/zh_CN/extension/paddle_serving.md
+62
-1
tools/export_serving_model.py
tools/export_serving_model.py
+76
-0
tools/serving/image_http_client.py
tools/serving/image_http_client.py
+48
-0
tools/serving/image_service_cpu.py
tools/serving/image_service_cpu.py
+60
-0
tools/serving/image_service_gpu.py
tools/serving/image_service_gpu.py
+62
-0
tools/serving/utils.py
tools/serving/utils.py
+84
-0
未找到文件。
docs/zh_CN/extension/paddle_serving.md
浏览文件 @
db6d9816
# 模型服务化部署
[
Paddle Serving
](
https://github.com/PaddlePaddle/Serving
)
旨在帮助深度学习开发者轻易部署在线预测服务,支持一键部署工业级的服务能力、客户端和服务端之间高并发和高效通信、并支持多种编程语言开发客户端等特点,详细使用请参考
[
Paddle Serving 相关文档
](
https://github.com/PaddlePaddle/Serving
)
。
## 一、简介
[
Paddle Serving
](
https://github.com/PaddlePaddle/Serving
)
旨在帮助深度学习开发者轻易部署在线预测服务,支持一键部署工业级的服务能力、客户端和服务端之间高并发和高效通信、并支持多种编程语言开发客户端。
该部分以HTTP预测服务部署为例,介绍怎样在PaddleClas中使用PaddleServing部署模型服务。
## 二、Serving安装
Serving官网推荐使用docker安装并部署Serving环境。首先需要拉取docker环境并创建基于Serving的docker。
```
shell
nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:0.2.0-gpu
nvidia-docker run
-p
9292:9292
--name
test
-dit
hub.baidubce.com/paddlepaddle/serving:0.2.0-gpu
nvidia-docker
exec
-it
test
bash
```
进入docker后,需要安装Serving相关的python包。
```
shell
pip
install
paddlepaddle-gpu
pip
install
paddle-serving-client
pip
install
paddle-serving-server-gpu
```
*
如果安装速度太慢,可以通过
`-i https://pypi.tuna.tsinghua.edu.cn/simple`
更换源,加速安装过程。
*
如果希望部署CPU服务,可以安装serving-server的cpu版本,安装命令如下。
```
shell
pip
install
paddle-serving-server
```
### 三、导出模型
使用
`tools/export_serving_model.py`
脚本导出Serving模型,以
`ResNet50_vd`
为例,使用方法如下。
```
shell
python tools/export_serving_model.py
-m
ResNet50_vd
-p
./pretrained/ResNet50_vd_pretrained/
-o
serving
```
最终在serving文件夹下会生成
`ppcls_client_conf`
与
`ppcls_model`
两个文件夹,分别存储了client配置、模型参数与结构文件。
### 四、服务部署与请求
*
使用下面的方式启动Serving服务。
```
shell
python tools/serving/image_service_gpu.py serving/ppcls_model workdir 9292
```
其中
`serving/ppcls_model`
为刚才保存的Serving模型地址,
`workdir`
为为工作目录,
`9292`
为服务的端口号。
*
使用下面的脚本向Serving服务发送识别请求,并返回结果。
```
python tools/serving/image_http_client.py 9292 ./docs/images/logo.png
```
`9292`
为发送请求的端口号,需要与服务启动时的端口号保持一致,
`./docs/images/logo.png`
为待识别的图像文件。最终返回Top1识别结果的类别ID以及概率值。
*
更多的服务部署类型,如
`RPC预测服务`
等,可以参考Serving的github官网:
[
https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imagenet
](
https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imagenet
)
tools/export_serving_model.py
0 → 100644
浏览文件 @
db6d9816
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
argparse
import
os
from
ppcls.modeling
import
architectures
import
paddle.fluid
as
fluid
import
paddle_serving_client.io
as
serving_io
def
parse_args
():
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"-m"
,
"--model"
,
type
=
str
)
parser
.
add_argument
(
"-p"
,
"--pretrained_model"
,
type
=
str
)
parser
.
add_argument
(
"-o"
,
"--output_path"
,
type
=
str
,
default
=
""
)
parser
.
add_argument
(
"--class_dim"
,
type
=
int
,
default
=
1000
)
parser
.
add_argument
(
"--img_size"
,
type
=
int
,
default
=
224
)
return
parser
.
parse_args
()
def
create_input
(
img_size
=
224
):
image
=
fluid
.
data
(
name
=
'image'
,
shape
=
[
None
,
3
,
img_size
,
img_size
],
dtype
=
'float32'
)
return
image
def
create_model
(
args
,
model
,
input
,
class_dim
=
1000
):
if
args
.
model
==
"GoogLeNet"
:
out
,
_
,
_
=
model
.
net
(
input
=
input
,
class_dim
=
class_dim
)
else
:
out
=
model
.
net
(
input
=
input
,
class_dim
=
class_dim
)
out
=
fluid
.
layers
.
softmax
(
out
)
return
out
def
main
():
args
=
parse_args
()
model
=
architectures
.
__dict__
[
args
.
model
]()
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
startup_prog
=
fluid
.
Program
()
infer_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
infer_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
image
=
create_input
(
args
.
img_size
)
out
=
create_model
(
args
,
model
,
image
,
class_dim
=
args
.
class_dim
)
infer_prog
=
infer_prog
.
clone
(
for_test
=
True
)
fluid
.
load
(
program
=
infer_prog
,
model_path
=
args
.
pretrained_model
,
executor
=
exe
)
model_path
=
os
.
path
.
join
(
args
.
output_path
,
"ppcls_model"
)
conf_path
=
os
.
path
.
join
(
args
.
output_path
,
"ppcls_client_conf"
)
serving_io
.
save_model
(
model_path
,
conf_path
,
{
"image"
:
image
},
{
"prediction"
:
out
},
infer_prog
)
if
__name__
==
"__main__"
:
main
()
tools/serving/image_http_client.py
0 → 100644
浏览文件 @
db6d9816
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
requests
import
base64
import
json
import
sys
import
numpy
as
np
py_version
=
sys
.
version_info
[
0
]
def
predict
(
image_path
,
server
):
if
py_version
==
2
:
image
=
base64
.
b64encode
(
open
(
image_path
).
read
())
else
:
image
=
base64
.
b64encode
(
open
(
image_path
,
"rb"
).
read
()).
decode
(
"utf-8"
)
req
=
json
.
dumps
({
"feed"
:
[{
"image"
:
image
}],
"fetch"
:
[
"prediction"
]})
r
=
requests
.
post
(
server
,
data
=
req
,
headers
=
{
"Content-Type"
:
"application/json"
})
try
:
pred
=
r
.
json
()[
"result"
][
"prediction"
][
0
]
cls_id
=
np
.
argmax
(
pred
)
score
=
pred
[
cls_id
]
pred
=
{
"cls_id"
:
cls_id
,
"score"
:
score
}
return
pred
except
ValueError
:
print
(
r
.
text
)
return
r
if
__name__
==
"__main__"
:
server
=
"http://127.0.0.1:{}/image/prediction"
.
format
(
sys
.
argv
[
1
])
image_file
=
sys
.
argv
[
2
]
while
True
:
res
=
predict
(
image_file
,
server
)
print
(
"res:"
,
res
)
tools/serving/image_service_cpu.py
0 → 100644
浏览文件 @
db6d9816
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
base64
from
paddle_serving_server.web_service
import
WebService
import
utils
class
ImageService
(
WebService
):
def
__init__
(
self
,
name
):
super
(
ImageService
,
self
).
__init__
(
name
=
name
)
self
.
operators
=
self
.
create_operators
()
def
create_operators
(
self
):
size
=
224
img_mean
=
[
0.485
,
0.456
,
0.406
]
img_std
=
[
0.229
,
0.224
,
0.225
]
img_scale
=
1.0
/
255.0
decode_op
=
utils
.
DecodeImage
()
resize_op
=
utils
.
ResizeImage
(
resize_short
=
256
)
crop_op
=
utils
.
CropImage
(
size
=
(
size
,
size
))
normalize_op
=
utils
.
NormalizeImage
(
scale
=
img_scale
,
mean
=
img_mean
,
std
=
img_std
)
totensor_op
=
utils
.
ToTensor
()
return
[
decode_op
,
resize_op
,
crop_op
,
normalize_op
,
totensor_op
]
def
_process_image
(
self
,
data
,
ops
):
for
op
in
ops
:
data
=
op
(
data
)
return
data
def
preprocess
(
self
,
feed
=
{},
fetch
=
[]):
feed_batch
=
[]
for
ins
in
feed
:
if
"image"
not
in
ins
:
raise
(
"feed data error!"
)
sample
=
base64
.
b64decode
(
ins
[
"image"
])
img
=
self
.
_process_image
(
sample
,
self
.
operators
)
feed_batch
.
append
({
"image"
:
img
})
return
feed_batch
,
fetch
image_service
=
ImageService
(
name
=
"image"
)
image_service
.
load_model_config
(
sys
.
argv
[
1
])
image_service
.
prepare_server
(
workdir
=
sys
.
argv
[
2
],
port
=
int
(
sys
.
argv
[
3
]),
device
=
"cpu"
)
image_service
.
run_server
()
image_service
.
run_flask
()
tools/serving/image_service_gpu.py
0 → 100644
浏览文件 @
db6d9816
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
base64
from
paddle_serving_server_gpu.web_service
import
WebService
import
utils
class
ImageService
(
WebService
):
def
__init__
(
self
,
name
):
super
(
ImageService
,
self
).
__init__
(
name
=
name
)
self
.
operators
=
self
.
create_operators
()
def
create_operators
(
self
):
size
=
224
img_mean
=
[
0.485
,
0.456
,
0.406
]
img_std
=
[
0.229
,
0.224
,
0.225
]
img_scale
=
1.0
/
255.0
decode_op
=
utils
.
DecodeImage
()
resize_op
=
utils
.
ResizeImage
(
resize_short
=
256
)
crop_op
=
utils
.
CropImage
(
size
=
(
size
,
size
))
normalize_op
=
utils
.
NormalizeImage
(
scale
=
img_scale
,
mean
=
img_mean
,
std
=
img_std
)
totensor_op
=
utils
.
ToTensor
()
return
[
decode_op
,
resize_op
,
crop_op
,
normalize_op
,
totensor_op
]
def
_process_image
(
self
,
data
,
ops
):
for
op
in
ops
:
data
=
op
(
data
)
return
data
def
preprocess
(
self
,
feed
=
{},
fetch
=
[]):
feed_batch
=
[]
for
ins
in
feed
:
if
"image"
not
in
ins
:
raise
(
"feed data error!"
)
sample
=
base64
.
b64decode
(
ins
[
"image"
])
img
=
self
.
_process_image
(
sample
,
self
.
operators
)
feed_batch
.
append
({
"image"
:
img
})
return
feed_batch
,
fetch
image_service
=
ImageService
(
name
=
"image"
)
image_service
.
load_model_config
(
sys
.
argv
[
1
])
image_service
.
set_gpus
(
"0"
)
image_service
.
prepare_server
(
workdir
=
sys
.
argv
[
2
],
port
=
int
(
sys
.
argv
[
3
]),
device
=
"gpu"
)
image_service
.
run_server
()
image_service
.
run_flask
()
tools/serving/utils.py
0 → 100644
浏览文件 @
db6d9816
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
cv2
import
numpy
as
np
class
DecodeImage
(
object
):
def
__init__
(
self
,
to_rgb
=
True
):
self
.
to_rgb
=
to_rgb
def
__call__
(
self
,
img
):
data
=
np
.
frombuffer
(
img
,
dtype
=
'uint8'
)
img
=
cv2
.
imdecode
(
data
,
1
)
if
self
.
to_rgb
:
assert
img
.
shape
[
2
]
==
3
,
'invalid shape of image[%s]'
%
(
img
.
shape
)
img
=
img
[:,
:,
::
-
1
]
return
img
class
ResizeImage
(
object
):
def
__init__
(
self
,
resize_short
=
None
):
self
.
resize_short
=
resize_short
def
__call__
(
self
,
img
):
img_h
,
img_w
=
img
.
shape
[:
2
]
percent
=
float
(
self
.
resize_short
)
/
min
(
img_w
,
img_h
)
w
=
int
(
round
(
img_w
*
percent
))
h
=
int
(
round
(
img_h
*
percent
))
return
cv2
.
resize
(
img
,
(
w
,
h
))
class
CropImage
(
object
):
def
__init__
(
self
,
size
):
if
type
(
size
)
is
int
:
self
.
size
=
(
size
,
size
)
else
:
self
.
size
=
size
def
__call__
(
self
,
img
):
w
,
h
=
self
.
size
img_h
,
img_w
=
img
.
shape
[:
2
]
w_start
=
(
img_w
-
w
)
//
2
h_start
=
(
img_h
-
h
)
//
2
w_end
=
w_start
+
w
h_end
=
h_start
+
h
return
img
[
h_start
:
h_end
,
w_start
:
w_end
,
:]
class
NormalizeImage
(
object
):
def
__init__
(
self
,
scale
=
None
,
mean
=
None
,
std
=
None
):
self
.
scale
=
np
.
float32
(
scale
if
scale
is
not
None
else
1.0
/
255.0
)
mean
=
mean
if
mean
is
not
None
else
[
0.485
,
0.456
,
0.406
]
std
=
std
if
std
is
not
None
else
[
0.229
,
0.224
,
0.225
]
shape
=
(
1
,
1
,
3
)
self
.
mean
=
np
.
array
(
mean
).
reshape
(
shape
).
astype
(
'float32'
)
self
.
std
=
np
.
array
(
std
).
reshape
(
shape
).
astype
(
'float32'
)
def
__call__
(
self
,
img
):
return
(
img
.
astype
(
'float32'
)
*
self
.
scale
-
self
.
mean
)
/
self
.
std
class
ToTensor
(
object
):
def
__init__
(
self
):
pass
def
__call__
(
self
,
img
):
img
=
img
.
transpose
((
2
,
0
,
1
))
return
img
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录