未验证 提交 d5173bf1 编写于 作者: C cuicheng01 提交者: GitHub

Merge pull request #1987 from TingquanGao/dev/pulc_whl_deploy

[WIP] feat: support PULC to deploy with whl
include LICENSE.txt
include README.md
include docs/en/whl_en.md
recursive-include deploy/python predict_cls.py preprocess.py postprocess.py det_preprocess.py
recursive-include deploy/python *.py
recursive-include deploy/configs *.yaml
recursive-include deploy/utils get_image_list.py config.py logger.py predictor.py
recursive-include ppcls/ *.py *.txt
\ No newline at end of file
......@@ -30,6 +30,6 @@ PostProcess:
main_indicator: Topk
Topk:
topk: 5
class_id_map_file: "../dataset/traffic_sign/label_name_id.txt"
class_id_map_file: "../ppcls/utils/PULC_label_list/traffic_sign_label_list.txt"
SavePreLabel:
save_dir: ./pre_label/
......@@ -212,14 +212,14 @@ You can save the prediction result(s) as pre-label, only need to use `pre_label_
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/')
infer_imgs = 'docs/images/inference_deployment/whl_' # it can be infer_imgs folder path which contains all of images you want to predict.
infer_imgs = 'docs/images/' # it can be infer_imgs folder path which contains all of images you want to predict.
result=clas.predict(infer_imgs)
print(next(result))
```
* CLI
```bash
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/inference_deployment/whl_' --save_dir='./output_pre_label/'
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/' --save_dir='./output_pre_label/'
```
<a name="4.8"></a>
......
......@@ -18,7 +18,7 @@ PaddleClas 支持 Python Whl 包方式进行预测,目前 Whl 包方式仅支
- [4.6 对 `NumPy.ndarray` 格式数据进行预测](#4.6)
- [4.7 保存预测结果](#4.7)
- [4.8 指定 label name](#4.8)
<a name="1"></a>
## 1. 安装 paddleclas
......@@ -212,14 +212,14 @@ print(next(result))
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/')
infer_imgs = 'docs/images/whl/' # it can be infer_imgs folder path which contains all of images you want to predict.
infer_imgs = 'docs/images/' # it can be infer_imgs folder path which contains all of images you want to predict.
result=clas.predict(infer_imgs)
print(next(result))
```
* CLI
```bash
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/whl/' --save_dir='./output_pre_label/'
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/' --save_dir='./output_pre_label/'
```
<a name="4.8"></a>
......
此差异已折叠。
0 pl80
1 w9
2 p6
3 ph4.2
4 i8
5 w14
6 w33
7 pa13
8 im
9 w58
10 pl90
11 il70
12 p5
13 pm55
14 pl60
15 ip
16 p11
17 pdd
18 wc
19 i2r
20 w30
21 pmr
22 p23
23 pl15
24 pm10
25 pss
26 w1
27 p4
28 w38
29 w50
30 w34
31 pw3.5
32 iz
33 w39
34 w11
35 p1n
36 pr70
37 pd
38 pnl
39 pg
40 ph5.3
41 w66
42 il80
43 pb
44 pbm
45 pm5
46 w24
47 w67
48 w49
49 pm40
50 ph4
51 w45
52 i4
53 w37
54 ph2.6
55 pl70
56 ph5.5
57 i14
58 i11
59 p7
60 p29
61 pne
62 pr60
63 pm13
64 ph4.5
65 p12
66 p3
67 w40
68 pl5
69 w13
70 pr10
71 p14
72 i4l
73 pr30
74 pw4.2
75 w16
76 p17
77 ph3
78 i9
79 w15
80 w35
81 pa8
82 pt
83 pr45
84 w17
85 pl30
86 pcs
87 pctl
88 pr50
89 ph4.4
90 pm46
91 pm35
92 i15
93 pa12
94 pclr
95 i1
96 pcd
97 pbp
98 pcr
99 w28
100 ps
101 pm8
102 w18
103 w2
104 w52
105 ph2.9
106 ph1.8
107 pe
108 p20
109 w36
110 p10
111 pn
112 pa14
113 w54
114 ph3.2
115 p2
116 ph2.5
117 w62
118 w55
119 pw3
120 pw4.5
121 i12
122 ph4.3
123 phclr
124 i10
125 pr5
126 i13
127 w10
128 p26
129 w26
130 p8
131 w5
132 w42
133 il50
134 p13
135 pr40
136 p25
137 w41
138 pl20
139 ph4.8
140 pnlc
141 ph3.3
142 w29
143 ph2.1
144 w53
145 pm30
146 p24
147 p21
148 pl40
149 w27
150 pmb
151 pc
152 i6
153 pr20
154 p18
155 ph3.8
156 pm50
157 pm25
158 i2
159 w22
160 w47
161 w56
162 pl120
163 ph2.8
164 i7
165 w12
166 pm1.5
167 pm2.5
168 w32
169 pm15
170 ph5
171 w19
172 pw3.2
173 pw2.5
174 pl10
175 il60
176 w57
177 w48
178 w60
179 pl100
180 pr80
181 p16
182 pl110
183 w59
184 w64
185 w20
186 ph2
187 p9
188 il100
189 w31
190 w65
191 ph2.4
192 pr100
193 p19
194 ph3.5
195 pa10
196 pcl
197 pl35
198 p15
199 w7
200 pa6
201 phcs
202 w43
203 p28
204 w6
205 w3
206 w25
207 pl25
208 il110
209 p1
210 w46
211 pn-2
212 w51
213 w44
214 w63
215 w23
216 pm20
217 w8
218 pmblr
219 w4
220 i5
221 il90
222 w21
223 p27
224 pl50
225 pl65
226 w61
227 ph2.2
228 pm2
229 i3
230 pa18
231 pw4
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册