Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
d5105825
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d5105825
编写于
12月 25, 2020
作者:
F
furnace
提交者:
GitHub
12月 25, 2020
1
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add amp support for SE_ResNet50_vd (#509)
* add amp support for SE_ResNet50_vd * updates for data_format
上级
aa655564
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
145 addition
and
31 deletion
+145
-31
configs/ResNet/ResNet50_vd_fp16.yaml
configs/ResNet/ResNet50_vd_fp16.yaml
+85
-0
ppcls/modeling/architectures/se_resnet_vd.py
ppcls/modeling/architectures/se_resnet_vd.py
+60
-31
未找到文件。
configs/ResNet/ResNet50_vd_fp16.yaml
0 → 100644
浏览文件 @
d5105825
mode
:
'
train'
ARCHITECTURE
:
name
:
'
ResNet50_vd'
pretrained_model
:
"
"
model_save_dir
:
"
./output/"
classes_num
:
1000
total_images
:
1281167
save_interval
:
1
validate
:
True
valid_interval
:
1
epochs
:
200
topk
:
5
image_shape
:
[
3
,
224
,
224
]
# mixed precision training
use_amp
:
True
use_pure_fp16
:
False
multi_precision
:
False
scale_loss
:
128.0
use_dynamic_loss_scaleing
:
True
data_format
:
"
NCHW"
use_mix
:
True
ls_epsilon
:
0.1
LEARNING_RATE
:
function
:
'
Cosine'
params
:
lr
:
0.1
OPTIMIZER
:
function
:
'
Momentum'
params
:
momentum
:
0.9
regularizer
:
function
:
'
L2'
factor
:
0.000070
TRAIN
:
batch_size
:
256
num_workers
:
4
file_list
:
"
./dataset/ILSVRC2012/train_list.txt"
data_dir
:
"
./dataset/ILSVRC2012/"
shuffle_seed
:
0
transforms
:
-
DecodeImage
:
to_rgb
:
True
to_np
:
False
channel_first
:
False
-
RandCropImage
:
size
:
224
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
mix
:
-
MixupOperator
:
alpha
:
0.2
VALID
:
batch_size
:
64
num_workers
:
4
file_list
:
"
./dataset/ILSVRC2012/val_list.txt"
data_dir
:
"
./dataset/ILSVRC2012/"
shuffle_seed
:
0
transforms
:
-
DecodeImage
:
to_rgb
:
True
to_np
:
False
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
ppcls/modeling/architectures/se_resnet_vd.py
浏览文件 @
d5105825
...
@@ -33,16 +33,16 @@ __all__ = [
...
@@ -33,16 +33,16 @@ __all__ = [
class
ConvBNLayer
(
nn
.
Layer
):
class
ConvBNLayer
(
nn
.
Layer
):
def
__init__
(
def
__init__
(
self
,
self
,
num_channels
,
num_channel
s
,
num_filter
s
,
num_filters
,
filter_size
,
filter_size
,
stride
=
1
,
stride
=
1
,
groups
=
1
,
groups
=
1
,
is_vd_mode
=
False
,
is_vd_mode
=
Fals
e
,
act
=
Non
e
,
act
=
None
,
name
=
None
,
name
=
None
,
):
data_format
=
"NCHW"
):
super
(
ConvBNLayer
,
self
).
__init__
()
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
is_vd_mode
=
is_vd_mode
self
.
is_vd_mode
=
is_vd_mode
...
@@ -57,7 +57,8 @@ class ConvBNLayer(nn.Layer):
...
@@ -57,7 +57,8 @@ class ConvBNLayer(nn.Layer):
padding
=
(
filter_size
-
1
)
//
2
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
bias_attr
=
False
,
data_format
=
data_format
)
if
name
==
"conv1"
:
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
bn_name
=
"bn_"
+
name
else
:
else
:
...
@@ -68,7 +69,8 @@ class ConvBNLayer(nn.Layer):
...
@@ -68,7 +69,8 @@ class ConvBNLayer(nn.Layer):
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
moving_variance_name
=
bn_name
+
'_variance'
,
data_format
=
data_format
)
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
if
self
.
is_vd_mode
:
if
self
.
is_vd_mode
:
...
@@ -86,7 +88,8 @@ class BottleneckBlock(nn.Layer):
...
@@ -86,7 +88,8 @@ class BottleneckBlock(nn.Layer):
shortcut
=
True
,
shortcut
=
True
,
if_first
=
False
,
if_first
=
False
,
reduction_ratio
=
16
,
reduction_ratio
=
16
,
name
=
None
):
name
=
None
,
data_format
=
"NCHW"
):
super
(
BottleneckBlock
,
self
).
__init__
()
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
self
.
conv0
=
ConvBNLayer
(
...
@@ -94,25 +97,29 @@ class BottleneckBlock(nn.Layer):
...
@@ -94,25 +97,29 @@ class BottleneckBlock(nn.Layer):
num_filters
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
1
,
filter_size
=
1
,
act
=
'relu'
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
name
=
name
+
"_branch2a"
,
data_format
=
data_format
)
self
.
conv1
=
ConvBNLayer
(
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_channels
=
num_filters
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
filter_size
=
3
,
stride
=
stride
,
stride
=
stride
,
act
=
'relu'
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
name
=
name
+
"_branch2b"
,
data_format
=
data_format
)
self
.
conv2
=
ConvBNLayer
(
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
filter_size
=
1
,
act
=
None
,
act
=
None
,
name
=
name
+
"_branch2c"
)
name
=
name
+
"_branch2c"
,
data_format
=
data_format
)
self
.
scale
=
SELayer
(
self
.
scale
=
SELayer
(
num_channels
=
num_filters
*
4
,
num_channels
=
num_filters
*
4
,
num_filters
=
num_filters
*
4
,
num_filters
=
num_filters
*
4
,
reduction_ratio
=
reduction_ratio
,
reduction_ratio
=
reduction_ratio
,
name
=
'fc_'
+
name
)
name
=
'fc_'
+
name
,
data_format
=
data_format
)
if
not
shortcut
:
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
self
.
short
=
ConvBNLayer
(
...
@@ -121,7 +128,8 @@ class BottleneckBlock(nn.Layer):
...
@@ -121,7 +128,8 @@ class BottleneckBlock(nn.Layer):
filter_size
=
1
,
filter_size
=
1
,
stride
=
1
,
stride
=
1
,
is_vd_mode
=
False
if
if_first
else
True
,
is_vd_mode
=
False
if
if_first
else
True
,
name
=
name
+
"_branch1"
)
name
=
name
+
"_branch1"
,
data_format
=
data_format
)
self
.
shortcut
=
shortcut
self
.
shortcut
=
shortcut
...
@@ -148,7 +156,8 @@ class BasicBlock(nn.Layer):
...
@@ -148,7 +156,8 @@ class BasicBlock(nn.Layer):
shortcut
=
True
,
shortcut
=
True
,
if_first
=
False
,
if_first
=
False
,
reduction_ratio
=
16
,
reduction_ratio
=
16
,
name
=
None
):
name
=
None
,
data_format
=
"NCHW"
):
super
(
BasicBlock
,
self
).
__init__
()
super
(
BasicBlock
,
self
).
__init__
()
self
.
stride
=
stride
self
.
stride
=
stride
self
.
conv0
=
ConvBNLayer
(
self
.
conv0
=
ConvBNLayer
(
...
@@ -157,19 +166,22 @@ class BasicBlock(nn.Layer):
...
@@ -157,19 +166,22 @@ class BasicBlock(nn.Layer):
filter_size
=
3
,
filter_size
=
3
,
stride
=
stride
,
stride
=
stride
,
act
=
'relu'
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
name
=
name
+
"_branch2a"
,
data_format
=
data_format
)
self
.
conv1
=
ConvBNLayer
(
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_channels
=
num_filters
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
filter_size
=
3
,
act
=
None
,
act
=
None
,
name
=
name
+
"_branch2b"
)
name
=
name
+
"_branch2b"
,
data_format
=
data_format
)
self
.
scale
=
SELayer
(
self
.
scale
=
SELayer
(
num_channels
=
num_filters
,
num_channels
=
num_filters
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
reduction_ratio
=
reduction_ratio
,
reduction_ratio
=
reduction_ratio
,
name
=
'fc_'
+
name
)
name
=
'fc_'
+
name
,
data_format
=
data_format
)
if
not
shortcut
:
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
self
.
short
=
ConvBNLayer
(
...
@@ -178,7 +190,8 @@ class BasicBlock(nn.Layer):
...
@@ -178,7 +190,8 @@ class BasicBlock(nn.Layer):
filter_size
=
1
,
filter_size
=
1
,
stride
=
1
,
stride
=
1
,
is_vd_mode
=
False
if
if_first
else
True
,
is_vd_mode
=
False
if
if_first
else
True
,
name
=
name
+
"_branch1"
)
name
=
name
+
"_branch1"
,
data_format
=
data_format
)
self
.
shortcut
=
shortcut
self
.
shortcut
=
shortcut
...
@@ -197,7 +210,12 @@ class BasicBlock(nn.Layer):
...
@@ -197,7 +210,12 @@ class BasicBlock(nn.Layer):
class
SELayer
(
nn
.
Layer
):
class
SELayer
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
reduction_ratio
,
name
=
None
):
def
__init__
(
self
,
num_channels
,
num_filters
,
reduction_ratio
,
name
=
None
,
data_format
=
"NCHW"
):
super
(
SELayer
,
self
).
__init__
()
super
(
SELayer
,
self
).
__init__
()
self
.
pool2d_gap
=
AdaptiveAvgPool2D
(
1
)
self
.
pool2d_gap
=
AdaptiveAvgPool2D
(
1
)
...
@@ -234,10 +252,16 @@ class SELayer(nn.Layer):
...
@@ -234,10 +252,16 @@ class SELayer(nn.Layer):
class
SE_ResNet_vd
(
nn
.
Layer
):
class
SE_ResNet_vd
(
nn
.
Layer
):
def
__init__
(
self
,
layers
=
50
,
class_dim
=
1000
):
def
__init__
(
self
,
layers
=
50
,
class_dim
=
1000
,
input_image_channel
=
3
,
data_format
=
"NCHW"
):
super
(
SE_ResNet_vd
,
self
).
__init__
()
super
(
SE_ResNet_vd
,
self
).
__init__
()
self
.
layers
=
layers
self
.
layers
=
layers
self
.
data_format
=
data_format
self
.
input_image_channel
=
input_image_channel
supported_layers
=
[
18
,
34
,
50
,
101
,
152
,
200
]
supported_layers
=
[
18
,
34
,
50
,
101
,
152
,
200
]
assert
layers
in
supported_layers
,
\
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
"supported layers are {} but input layer is {}"
.
format
(
...
@@ -258,27 +282,31 @@ class SE_ResNet_vd(nn.Layer):
...
@@ -258,27 +282,31 @@ class SE_ResNet_vd(nn.Layer):
num_filters
=
[
64
,
128
,
256
,
512
]
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
conv1_1
=
ConvBNLayer
(
self
.
conv1_1
=
ConvBNLayer
(
num_channels
=
3
,
num_channels
=
self
.
input_image_channel
,
num_filters
=
32
,
num_filters
=
32
,
filter_size
=
3
,
filter_size
=
3
,
stride
=
2
,
stride
=
2
,
act
=
'relu'
,
act
=
'relu'
,
name
=
"conv1_1"
)
name
=
"conv1_1"
,
data_format
=
self
.
data_format
)
self
.
conv1_2
=
ConvBNLayer
(
self
.
conv1_2
=
ConvBNLayer
(
num_channels
=
32
,
num_channels
=
32
,
num_filters
=
32
,
num_filters
=
32
,
filter_size
=
3
,
filter_size
=
3
,
stride
=
1
,
stride
=
1
,
act
=
'relu'
,
act
=
'relu'
,
name
=
"conv1_2"
)
name
=
"conv1_2"
,
data_format
=
self
.
data_format
)
self
.
conv1_3
=
ConvBNLayer
(
self
.
conv1_3
=
ConvBNLayer
(
num_channels
=
32
,
num_channels
=
32
,
num_filters
=
64
,
num_filters
=
64
,
filter_size
=
3
,
filter_size
=
3
,
stride
=
1
,
stride
=
1
,
act
=
'relu'
,
act
=
'relu'
,
name
=
"conv1_3"
)
name
=
"conv1_3"
,
self
.
pool2d_max
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
data_format
=
self
.
data_format
)
self
.
pool2d_max
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
data_format
=
self
.
data_format
)
self
.
block_list
=
[]
self
.
block_list
=
[]
if
layers
>=
50
:
if
layers
>=
50
:
...
@@ -301,7 +329,8 @@ class SE_ResNet_vd(nn.Layer):
...
@@ -301,7 +329,8 @@ class SE_ResNet_vd(nn.Layer):
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
,
shortcut
=
shortcut
,
if_first
=
block
==
i
==
0
,
if_first
=
block
==
i
==
0
,
name
=
conv_name
))
name
=
conv_name
,
data_format
=
self
.
data_format
))
self
.
block_list
.
append
(
bottleneck_block
)
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
shortcut
=
True
else
:
else
:
...
...
Lab机器人
@CoCo_Code_Op9
mentioned in commit
b401e10b
·
6月 18, 2021
mentioned in commit
b401e10b
mentioned in commit b401e10be998d42f22948ea12a87ee61316d190f
开关提交列表
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录