提交 d5076fc8 编写于 作者: littletomatodonkey's avatar littletomatodonkey

fix dist link

上级 a64283b2
......@@ -52,11 +52,11 @@
| PPLCNet_x1_0 | 95.48 | 2.12 | 6.5 | 使用 SSLD 预训练模型 |
| PPLCNet_x1_0 | 95.48 | 2.12 | 6.5 | 使用 SSLD 预训练模型+EDA 策略|
| <b>PPLCNet_x1_0<b> | <b>95.92<b> | <b>2.12<b> | <b>6.5<b> | 使用 SSLD 预训练模型+EDA 策略+SKL-UGI 知识蒸馏策略|
从表中可以看出,backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backboone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是会导致精度大幅下降。将 backbone 替换为速度更快的 PPLCNet_x1_0 时,精度较 MobileNetV3_small_x0_35 高 13 个百分点,与此同时速度依旧可以快 20% 以上。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 0.7 个百分点,进一步地,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.44 个百分点。此时,PPLCNet_x1_0 达到了接近 SwinTranformer_tiny 模型的精度,但是速度快 40 多倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
**备注:**
**备注:**
* `Tpr`指标的介绍可以参考 [3.2 小节](#3.2)的备注部分,延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启 MKLDNN 加速策略,线程数为10。
* 关于 PPLCNet 的介绍可以参考 [PPLCNet 介绍](../models/PP-LCNet.md),相关论文可以查阅[PPLCNet paper](https://arxiv.org/abs/2109.15099)
......@@ -64,17 +64,17 @@
<a name="2"></a>
## 2. 模型快速体验
<a name="2.1"></a>
<a name="2.1"></a>
### 2.1 安装 paddleclas
使用如下命令快速安装 paddlepaddle, paddleclas
```
```
pip3 install paddlepaddle paddleclas
```
<a name="2.2"></a>
<a name="2.2"></a>
### 2.2 预测
......@@ -109,27 +109,27 @@ print(next(result))
[{'class_ids': [1], 'scores': [0.9871138], 'label_names': ['contains_vehicle'], 'filename': 'deploy/images/PULC/car_exists/objects365_00001507.jpeg'}]
```
<a name="3"></a>
<a name="3"></a>
## 3. 模型训练、评估和预测
<a name="3.1"></a>
### 3.1 环境配置
* 安装:请先参考文档[环境准备](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
<a name="3.2"></a>
### 3.2 数据准备
<a name="3.2.1"></a>
<a name="3.2.1"></a>
#### 3.2.1 数据集来源
本案例中所使用的所有数据集均为开源数据,`train``val` 集合均为[Objects365 数据](https://www.objects365.org/overview.html)的训练集的子集,`ImageNet_val`[ImageNet-1k 数据](https://www.image-net.org/)的验证集。
<a name="3.2.2"></a>
<a name="3.2.2"></a>
#### 3.2.2 数据集获取
......@@ -182,17 +182,17 @@ cd ../
```
其中 `train/``val/` 分别为训练集和验证集。`train_list.txt``val_list.txt` 分别为训练集和验证集的标签文件,`train_list.txt.debug``val_list.txt.debug` 分别为训练集和验证集的 `debug` 标签文件,其分别是 `train_list.txt``val_list.txt` 的子集,用该文件可以快速体验本案例的流程。`ImageNet_val/` 是 ImageNet-1k 的验证集,该集合和 `train` 集合的混合数据用于本案例的 `SKL-UGI知识蒸馏策略`,对应的训练标签文件为 `train_list_for_distill.txt`
**备注:**
**备注:**
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考 [PaddleClas 分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](@ruoyu)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](../advanced_tutorials/ssld.md#3.2)
<a name="3.3"></a>
<a name="3.3"></a>
### 3.3 模型训练
### 3.3 模型训练
`ppcls/configs/PULC/car_exists/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
......@@ -202,12 +202,12 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/car_exists/PPLCNet_x1_0.yaml
-c ./ppcls/configs/PULC/car_exists/PPLCNet_x1_0.yaml
```
验证集的最佳指标在 `0.95-0.96` 之间(数据集较小,容易造成波动)。
**备注:**
**备注:**
* 此时使用的指标为Tpr,该指标描述了在假正类率(Fpr)小于某一个指标时的真正类率(Tpr),是产业中二分类问题常用的指标之一。在本案例中,Fpr 为 1/100 。关于 Fpr 和 Tpr 的更多介绍,可以参考[这里](https://baike.baidu.com/item/AUC/19282953)
......@@ -245,12 +245,12 @@ python3 tools/infer.py \
[{'class_ids': [1], 'scores': [0.9871138], 'label_names': ['contains_vehicle'], 'filename': 'deploy/images/PULC/car_exists/objects365_00001507.jpeg'}]
```
**备注:**
**备注:**
* 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
* 默认是对 `deploy/images/PULC/car_exists/objects365_00001507.jpeg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
* 二分类默认的阈值为0.5, 如果需要指定阈值,可以重写 `Infer.PostProcess.threshold` ,如`-o Infer.PostProcess.threshold=0.9794`,该值需要根据实际场景来确定,此处的 `0.9794` 是在该场景中的 `val` 数据集在千分之一 Fpr 下得到的最佳 Tpr 所得到的。
......@@ -261,10 +261,10 @@ python3 tools/infer.py \
<a name="4.1"></a>
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu)
<a name="4.1.1"></a>
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md)
<a name="4.1.1"></a>
#### 4.1.1 教师模型训练
......@@ -281,7 +281,7 @@ python3 -m paddle.distributed.launch \
验证集的最佳指标为 `0.96-0.98` 之间,当前教师模型最好的权重保存在 `output/ResNet101_vd/best_model.pdparams`
<a name="4.1.2"></a>
<a name="4.1.2"></a>
#### 4.1.2 蒸馏训练
......@@ -299,7 +299,7 @@ python3 -m paddle.distributed.launch \
验证集的最佳指标为 `0.95-0.97` 之间,当前模型最好的权重保存在 `output/DistillationModel/best_model_student.pdparams`
<a name="5"></a>
<a name="5"></a>
## 5. 超参搜索
......@@ -311,15 +311,15 @@ python3 -m paddle.distributed.launch \
## 6. 模型推理部署
<a name="6.1"></a>
<a name="6.1"></a>
### 6.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于 Paddle Inference 推理引擎的介绍,可以参考 [Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。
<a name="6.1.1"></a>
<a name="6.1.1"></a>
### 6.1.1 基于训练得到的权重导出 inference 模型
......@@ -342,7 +342,7 @@ python3 tools/export_model.py \
**备注:** 此处的最佳权重是经过知识蒸馏后的权重路径,如果没有执行知识蒸馏的步骤,最佳模型保存在`output/PPLCNet_x1_0/best_model.pdparams`中。
<a name="6.1.2"></a>
<a name="6.1.2"></a>
### 6.1.2 直接下载 inference 模型
......@@ -363,7 +363,7 @@ wget https://paddleclas.bj.bcebos.com/models/PULC/car_exists_infer.tar && tar -x
│ └── inference.pdmodel
```
<a name="6.2"></a>
<a name="6.2"></a>
### 6.2 基于 Python 预测引擎推理
......@@ -416,32 +416,32 @@ objects365_00001521.jpeg: class id(s): [0], score(s): [0.99], label_name(s
其中,`contains_car` 表示该图里存在车,`nocar` 表示该图里不存在车。
<a name="6.3"></a>
<a name="6.3"></a>
### 6.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="6.4"></a>
<a name="6.4"></a>
### 6.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="6.5"></a>
<a name="6.5"></a>
### 6.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="6.6"></a>
<a name="6.6"></a>
### 6.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
......@@ -238,7 +238,7 @@ python3 tools/infer.py \
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu)
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md)
<a name="4.1.1"></a>
......
......@@ -66,17 +66,17 @@
<a name="2"></a>
## 2. 模型快速体验
<a name="2.1"></a>
<a name="2.1"></a>
### 2.1 安装 paddleclas
使用如下命令快速安装 paddlepaddle, paddleclas
```
```
pip3 install paddlepaddle paddleclas
```
<a name="2.2"></a>
<a name="2.2"></a>
### 2.2 预测
......@@ -141,8 +141,8 @@ print(next(result))
</div>
我们将原始数据转换成了 PaddleClas 多标签可读的数据格式,可以直接下载。
我们将原始数据转换成了 PaddleClas 多标签可读的数据格式,可以直接下载。
进入 PaddleClas 目录。
```
......@@ -159,7 +159,7 @@ cd ../
```
执行上述命令后,`dataset/` 下存在 `pa100k` 目录,该目录中具有以下数据:
执行上述命令后,`pa100k`目录中具有以下数据:
......@@ -172,7 +172,7 @@ pa100k
├── val
│   ├── 080001.jpg
│   ├── 080002.jpg
...
...
├── test
│   ├── 090001.jpg
│   ├── 090002.jpg
......@@ -251,7 +251,7 @@ python3 tools/infer.py \
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu)
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md)
<a name="4.1.1"></a>
......@@ -379,7 +379,7 @@ python3.7 python/predict_cls.py -c configs/PULC/person_attribute/inference_perso
输出结果如下。
```
090004.jpg: {'attributes': ['Male', 'Age18-60', 'Back', 'Glasses: False', 'Hat: False', 'HoldObjectsInFront: False', 'Backpack', 'Upper: LongSleeve UpperPlaid', 'Lower: Trousers', 'No boots'], 'output': [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1]}
090004.jpg: {'attributes': ['Male', 'Age18-60', 'Back', 'Glasses: False', 'Hat: False', 'HoldObjectsInFront: False', 'Backpack', 'Upper: LongSleeve UpperPlaid', 'Lower: Trousers', 'No boots'], 'output': [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1]}
```
<a name="6.2.2"></a>
......@@ -396,8 +396,8 @@ python3.7 python/predict_cls.py -c configs/PULC/person_attribute/inference_perso
终端中会输出该文件夹内所有图像的属性识别结果,如下所示。
```
090004.jpg: {'attributes': ['Male', 'Age18-60', 'Back', 'Glasses: False', 'Hat: False', 'HoldObjectsInFront: False', 'Backpack', 'Upper: LongSleeve UpperPlaid', 'Lower: Trousers', 'No boots'], 'output': [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1]}
090007.jpg: {'attributes': ['Female', 'Age18-60', 'Side', 'Glasses: False', 'Hat: False', 'HoldObjectsInFront: False', 'No bag', 'Upper: ShortSleeve', 'Lower: Skirt&Dress', 'No boots'], 'output': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0]}
090004.jpg: {'attributes': ['Male', 'Age18-60', 'Back', 'Glasses: False', 'Hat: False', 'HoldObjectsInFront: False', 'Backpack', 'Upper: LongSleeve UpperPlaid', 'Lower: Trousers', 'No boots'], 'output': [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1]}
090007.jpg: {'attributes': ['Female', 'Age18-60', 'Side', 'Glasses: False', 'Hat: False', 'HoldObjectsInFront: False', 'No bag', 'Upper: ShortSleeve', 'Lower: Skirt&Dress', 'No boots'], 'output': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0]}
```
<a name="6.3"></a>
......
......@@ -52,11 +52,11 @@
| PPLCNet_x1_0 | 92.10 | 2.12 | 6.5 | 使用 SSLD 预训练模型 |
| PPLCNet_x1_0 | 93.43 | 2.12 | 6.5 | 使用 SSLD 预训练模型+EDA 策略|
| <b>PPLCNet_x1_0<b> | <b>95.60<b> | <b>2.12<b> | <b>6.5<b> | 使用 SSLD 预训练模型+EDA 策略+SKL-UGI 知识蒸馏策略|
从表中可以看出,backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backboone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是会导致精度大幅下降。将 backbone 替换为速度更快的 PPLCNet_x1_0 时,精度较 MobileNetV3_small_x0_35 高 20 多个百分点,与此同时速度依旧可以快 20% 以上。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 2.6 个百分点,进一步地,当融合EDA策略后,精度可以再提升 1.3 个百分点,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 2.2 个百分点。此时,PPLCNet_x1_0 达到了 SwinTranformer_tiny 模型的精度,但是速度快 40 多倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
**备注:**
**备注:**
* `Tpr`指标的介绍可以参考 [3.2 小节](#3.2)的备注部分,延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启 MKLDNN 加速策略,线程数为10。
* 关于 PPLCNet 的介绍可以参考 [PPLCNet 介绍](../models/PP-LCNet.md),相关论文可以查阅[PPLCNet paper](https://arxiv.org/abs/2109.15099)
......@@ -64,17 +64,17 @@
<a name="2"></a>
## 2. 模型快速体验
<a name="2.1"></a>
<a name="2.1"></a>
### 2.1 安装 paddleclas
使用如下命令快速安装 paddlepaddle, paddleclas
```
```
pip3 install paddlepaddle paddleclas
```
<a name="2.2"></a>
<a name="2.2"></a>
### 2.2 预测
......@@ -109,27 +109,27 @@ print(next(result))
[{'class_ids': [0], 'scores': [0.9955421453341842], 'label_names': ['nobody'], 'filename': 'PaddleClas/deploy/images/PULC/person_exists/objects365_01780782.jpg'}]
```
<a name="3"></a>
<a name="3"></a>
## 3. 模型训练、评估和预测
<a name="3.1"></a>
### 3.1 环境配置
* 安装:请先参考文档[环境准备](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
<a name="3.2"></a>
### 3.2 数据准备
<a name="3.2.1"></a>
<a name="3.2.1"></a>
#### 3.2.1 数据集来源
本案例中所使用的所有数据集均为开源数据,`train` 集合为[MS-COCO 数据](https://cocodataset.org/#overview)的训练集的子集,`val` 集合为[Object365 数据](https://www.objects365.org/overview.html)的训练集的子集,`ImageNet_val`[ImageNet-1k 数据](https://www.image-net.org/)的验证集。
<a name="3.2.2"></a>
<a name="3.2.2"></a>
#### 3.2.2 数据集获取
......@@ -185,17 +185,17 @@ cd ../
```
其中 `train/``val/` 分别为训练集和验证集。`train_list.txt``val_list.txt` 分别为训练集和验证集的标签文件,`train_list.txt.debug``val_list.txt.debug` 分别为训练集和验证集的 `debug` 标签文件,其分别是 `train_list.txt``val_list.txt` 的子集,用该文件可以快速体验本案例的流程。`ImageNet_val/` 是 ImageNet-1k 的验证集,该集合和 `train` 集合的混合数据用于本案例的 `SKL-UGI知识蒸馏策略`,对应的训练标签文件为 `train_list_for_distill.txt`
**备注:**
**备注:**
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考 [PaddleClas 分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](@ruoyu)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](../advanced_tutorials/ssld.md#3.2)
<a name="3.3"></a>
<a name="3.3"></a>
### 3.3 模型训练
### 3.3 模型训练
`ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
......@@ -205,12 +205,12 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml
-c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml
```
验证集的最佳指标在 `0.94-0.95` 之间(数据集较小,容易造成波动)。
**备注:**
**备注:**
* 此时使用的指标为Tpr,该指标描述了在假正类率(Fpr)小于某一个指标时的真正类率(Tpr),是产业中二分类问题常用的指标之一。在本案例中,Fpr 为千分之一。关于 Fpr 和 Tpr 的更多介绍,可以参考[这里](https://baike.baidu.com/item/AUC/19282953)
......@@ -248,12 +248,12 @@ python3 tools/infer.py \
[{'class_ids': [0], 'scores': [0.9878496769815683], 'label_names': ['nobody'], 'file_name': './dataset/person_exists/val/objects365_01780637.jpg'}]
```
**备注:**
**备注:**
* 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
* 默认是对 `deploy/images/PULC/person_exists/objects365_02035329.jpg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
* 二分类默认的阈值为0.5, 如果需要指定阈值,可以重写 `Infer.PostProcess.threshold` ,如`-o Infer.PostProcess.threshold=0.9794`,该值需要根据实际场景来确定,此处的 `0.9794` 是在该场景中的 `val` 数据集在千分之一 Fpr 下得到的最佳 Tpr 所得到的。
......@@ -264,10 +264,10 @@ python3 tools/infer.py \
<a name="4.1"></a>
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu)
<a name="4.1.1"></a>
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md)
<a name="4.1.1"></a>
#### 4.1.1 教师模型训练
......@@ -284,7 +284,7 @@ python3 -m paddle.distributed.launch \
验证集的最佳指标为 `0.96-0.98` 之间,当前教师模型最好的权重保存在 `output/ResNet101_vd/best_model.pdparams`
<a name="4.1.2"></a>
<a name="4.1.2"></a>
#### 4.1.2 蒸馏训练
......@@ -302,7 +302,7 @@ python3 -m paddle.distributed.launch \
验证集的最佳指标为 `0.95-0.97` 之间,当前模型最好的权重保存在 `output/DistillationModel/best_model_student.pdparams`
<a name="5"></a>
<a name="5"></a>
## 5. 超参搜索
......@@ -314,15 +314,15 @@ python3 -m paddle.distributed.launch \
## 6. 模型推理部署
<a name="6.1"></a>
<a name="6.1"></a>
### 6.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于 Paddle Inference 推理引擎的介绍,可以参考 [Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。
<a name="6.1.1"></a>
<a name="6.1.1"></a>
### 6.1.1 基于训练得到的权重导出 inference 模型
......@@ -345,7 +345,7 @@ python3 tools/export_model.py \
**备注:** 此处的最佳权重是经过知识蒸馏后的权重路径,如果没有执行知识蒸馏的步骤,最佳模型保存在`output/PPLCNet_x1_0/best_model.pdparams`中。
<a name="6.1.2"></a>
<a name="6.1.2"></a>
### 6.1.2 直接下载 inference 模型
......@@ -366,7 +366,7 @@ wget https://paddleclas.bj.bcebos.com/models/PULC/person_exists_infer.tar && tar
│ └── inference.pdmodel
```
<a name="6.2"></a>
<a name="6.2"></a>
### 6.2 基于 Python 预测引擎推理
......@@ -419,32 +419,32 @@ objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['so
其中,`someone` 表示该图里存在人,`nobody` 表示该图里不存在人。
<a name="6.3"></a>
<a name="6.3"></a>
### 6.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="6.4"></a>
<a name="6.4"></a>
### 6.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="6.5"></a>
<a name="6.5"></a>
### 6.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="6.6"></a>
<a name="6.6"></a>
### 6.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
......@@ -247,7 +247,7 @@ python3 tools/infer.py \
### 4.1 UDML 知识蒸馏
UDML 知识蒸馏是一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[UDML 知识蒸馏](@ruoyu)
UDML 知识蒸馏是一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[UDML 知识蒸馏](../advanced_tutorials/knowledge_distillation.md#1.2.3)
<a name="4.1.1"></a>
......
......@@ -183,13 +183,13 @@ cd ../
└── label_list.txt
```
其中`img_0/``img_90/``img_180/``img_270/`分别存放了4个角度的训练集和验证集数据。`train_list.txt``test_list.txt`分别为训练集和验证集的标签文件,`train_list.txt.debug``test_list.txt.debug`分别为训练集和验证集的`debug`标签文件,其分别是`train_list.txt``test_list.txt`的子集,用该文件可以快速体验本案例的流程。`distill_data/`是补充文字数据,该集合和`train`集合的混合数据用于本案例的`SKL-UGI知识蒸馏策略`,对应的训练标签文件为`train_list_for_distill.txt`。关于如何得到蒸馏的标签可以参考[知识蒸馏标签获得](@ruoyu)
其中`img_0/``img_90/``img_180/``img_270/`分别存放了4个角度的训练集和验证集数据。`train_list.txt``test_list.txt`分别为训练集和验证集的标签文件,`train_list.txt.debug``test_list.txt.debug`分别为训练集和验证集的`debug`标签文件,其分别是`train_list.txt``test_list.txt`的子集,用该文件可以快速体验本案例的流程。`distill_data/`是补充文字数据,该集合和`train`集合的混合数据用于本案例的`SKL-UGI知识蒸馏策略`,对应的训练标签文件为`train_list_for_distill.txt`。关于如何得到蒸馏的标签可以参考[知识蒸馏标签获得](../advanced_tutorials/ssld.md#3.2)
**备注:**
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](@ruoyu)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](../advanced_tutorials/ssld.md#3.2)
<a name="3.3"></a>
......@@ -255,7 +255,7 @@ python3 tools/infer.py \
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu)
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md)
<a name="4.1.1"></a>
......
......@@ -6,7 +6,7 @@
## 目录
- [1. 模型和应用场景介绍](#1)
- [2. 模型快速体验](#2)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [3.1 环境配置](#3.1)
- [3.2 数据准备](#3.2)
......@@ -51,10 +51,10 @@
| PPLCNet_x1_0* | 94.11 | 2.68 | 6.5 | 使用 SSLD 预训练模型 |
| <b>PPLCNet_x1_0**<b> | <b>96.01<b> | <b>2.72<b> | <b>6.5<b> | 使用 SSLD 预训练模型+EDA 策略|
| PPLCNet_x1_0** | 95.86 | 2.72 | 6.5 | 使用 SSLD 预训练模型+EDA 策略+SKL-UGI 知识蒸馏策略|
从表中可以看出,backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backboone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,精度下降也比较明显。将 backbone 替换为 PPLCNet_x1_0 时,精度较 MobileNetV3_small_x0_35 高 8.6 个百分点,速度快10%左右。在此基础上,更改分辨率和stride, 速度变慢 27%,但是精度可以提升 4.5%(采用[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)的方案),使用 SSLD 预训练模型后,精度可以继续提升约 0.05% ,进一步地,当融合EDA策略后,精度可以再提升 1.9 个百分点。最后,融合SKL-UGI 知识蒸馏策略后,在该场景无效。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
**备注:**
**备注:**
* 其中不带\*的模型表示分辨率为224x224,带\*的模型表示分辨率为48x192(h*w),数据增强从网络中的 stride 改为 `[2, [2, 1], [2, 1], [2, 1], [2, 1]]`,其中,外层列表中的每一个元素代表网络结构下采样层的stride,该策略为 [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) 提供的文本行方向分类器方案。带\*\*的模型表示分辨率为80x160(h*w), 网络中的 stride 改为 `[2, [2, 1], [2, 1], [2, 1], [2, 1]]`,其中,外层列表中的每一个元素代表网络结构下采样层的stride,此分辨率是经过[SHAS 超参数搜索策略](#TODO)搜索得到的。
* 延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启 MKLDNN 加速策略,线程数为10。
......@@ -63,18 +63,18 @@
<a name="2"></a>
## 2. 模型快速体验
<a name="2.1"></a>
<a name="2.1"></a>
### 2.1 安装 paddleclas
使用如下命令快速安装 paddlepaddle, paddleclas
```
```
pip3 install paddlepaddle paddleclas
```
<a name="2.2"></a>
<a name="2.2"></a>
### 2.2 预测
......@@ -108,34 +108,34 @@ print(next(result))
>>> result
[{'class_ids': [0], 'scores': [1.00], 'label_names': ['0_degree'], 'filename': 'deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png'}]
```
<a name="3"></a>
<a name="3"></a>
## 3. 模型训练、评估和预测
<a name="3.1"></a>
### 3.1 环境配置
* 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
<a name="3.2"></a>
### 3.2 数据准备
<a name="3.2.1"></a>
<a name="3.2.1"></a>
#### 3.2.1 数据集来源
本案例中所使用的所有数据集来源于内部数据,如果您希望体验训练过程,可以使用开源数据如[ICDAR2019-LSVT 文本行识别数据](https://aistudio.baidu.com/aistudio/datasetdetail/8429)
<a name="3.2.2"></a>
<a name="3.2.2"></a>
#### 3.2.2 数据集获取
在公开数据集的基础上经过后处理即可得到本案例需要的数据,具体处理方法如下:
本案例处理了 ICDAR2019-LSVT 文本行识别数据,将其中的 id 号为 0-1999 作为本案例的数据集合,经过旋转处理成 0 类 和 1 类,其中 0 类代表文本行为正,即 0 度,1 类代表文本行为反,即 180 度。
- 训练集合,id号为 0-1799 作为训练集合,0 类和 1 类共 3600 张。
......@@ -182,15 +182,15 @@ cd ../
```
其中 `0/``1/` 分别存放 0 类和 1 类的数据。`train_list.txt``val_list.txt` 分别为训练集和验证集的标签文件。
**备注:**
**备注:**
* 关于 `train_list.txt``val_list.txt` 的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
<a name="3.3"></a>
<a name="3.3"></a>
### 3.3 模型训练
### 3.3 模型训练
`ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
......@@ -200,11 +200,11 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml
-c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml
```
**备注:**
**备注:**
* 由于此时使用的数据集并非内部非开源数据集,此处不能直接复现提供的模型的指标,如果希望得到更高的精度,可以根据需要处理[ICDAR2019-LSVT 文本行识别数据](https://aistudio.baidu.com/aistudio/datasetdetail/8429)
......@@ -240,12 +240,12 @@ python3 tools/infer.py \
[{'class_ids': [0], 'scores': [1.0], 'file_name': 'deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png', 'label_names': ['0_degree']}]
```
**备注:**
**备注:**
* 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
* 默认是对 `deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
<a name="4"></a>
......@@ -254,10 +254,10 @@ python3 tools/infer.py \
<a name="4.1"></a>
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu)
<a name="4.1.1"></a>
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md)
<a name="4.1.1"></a>
#### 4.1.1 教师模型训练
......@@ -274,7 +274,7 @@ python3 -m paddle.distributed.launch \
当前教师模型最好的权重保存在 `output/ResNet101_vd/best_model.pdparams`
<a name="4.1.2"></a>
<a name="4.1.2"></a>
#### 4.1.2 蒸馏训练
......@@ -291,8 +291,8 @@ python3 -m paddle.distributed.launch \
当前模型最好的权重保存在 `output/DistillationModel/best_model_student.pdparams`
<a name="5"></a>
<a name="5"></a>
## 5. 超参搜索
......@@ -304,15 +304,15 @@ python3 -m paddle.distributed.launch \
## 6. 模型推理部署
<a name="6.1"></a>
<a name="6.1"></a>
### 6.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。
<a name="6.1.1"></a>
<a name="6.1.1"></a>
### 6.1.1 基于训练得到的权重导出 inference 模型
......@@ -335,7 +335,7 @@ python3 tools/export_model.py \
**备注:** 此处的最佳权重可以根据实际情况来选择,如果希望导出知识蒸馏后的权重,则最佳权重保存在`output/DistillationModel/best_model_student.pdparams`,在导出命令中更改`-o Global.pretrained_model=xx`中的字段为`output/DistillationModel/best_model_student`即可。
<a name="6.1.2"></a>
<a name="6.1.2"></a>
### 6.1.2 直接下载 inference 模型
......@@ -356,7 +356,7 @@ wget https://paddleclas.bj.bcebos.com/models/PULC/textline_orientation_infer.tar
│ └── inference.pdmodel
```
<a name="6.2"></a>
<a name="6.2"></a>
### 6.2 基于 Python 预测引擎推理
......@@ -383,7 +383,7 @@ python3.7 python/predict_cls.py -c configs/PULC/textline_orientation/inference_t
输出结果如下。
```
textline_orientation_test_0_0.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree']
textline_orientation_test_0_0.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree']
```
<a name="6.2.2"></a>
......@@ -400,40 +400,40 @@ python3.7 python/predict_cls.py -c configs/PULC/textline_orientation/inference_t
终端中会输出该文件夹内所有图像的分类结果,如下所示。
```
textline_orientation_test_0_0.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree']
textline_orientation_test_0_1.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree']
textline_orientation_test_1_0.png: class id(s): [1], score(s): [1.00], label_name(s): ['180_degree']
textline_orientation_test_1_1.png: class id(s): [1], score(s): [1.00], label_name(s): ['180_degree']
textline_orientation_test_0_0.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree']
textline_orientation_test_0_1.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree']
textline_orientation_test_1_0.png: class id(s): [1], score(s): [1.00], label_name(s): ['180_degree']
textline_orientation_test_1_1.png: class id(s): [1], score(s): [1.00], label_name(s): ['180_degree']
```
其中,`0_degree` 表示该文本行为 0 度,`180_degree` 表示该文本行为 180 度。
<a name="6.3"></a>
<a name="6.3"></a>
### 6.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
<a name="6.4"></a>
<a name="6.4"></a>
### 6.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
<a name="6.5"></a>
<a name="6.5"></a>
### 6.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
<a name="6.6"></a>
<a name="6.6"></a>
### 6.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
......@@ -211,7 +211,7 @@ traffic_sign
* 关于 `label_list_train.txt``label_list_test.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](@ruoyu)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](../advanced_tutorials/ssld.md)
<a name="3.3"></a>
......@@ -278,7 +278,7 @@ python3 tools/infer.py \
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu)
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md#3.2)
<a name="4.1.1"></a>
......
......@@ -17,7 +17,7 @@
- [4. 超参搜索](#4)
- [4.1 基于默认配置搜索](#4.1)
- [4.2 自定义搜索配置](#4.2)
<a name="1"></a>
### 1. PULC方案简介
......@@ -57,7 +57,7 @@ train/10.jpg 1
#### 2.2 标注文件生成
如果您已经有实际场景中的数据,那么按照上节的格式进行标注即可。这里,我们提供了一个快速生成数据的脚本,您只需要将不同类别的数据分别放在文件夹中,运行脚本即可生成标注文件。
如果您已经有实际场景中的数据,那么按照上节的格式进行标注即可。这里,我们提供了一个快速生成数据的脚本,您只需要将不同类别的数据分别放在文件夹中,运行脚本即可生成标注文件。
首先,假设您存放数据的路径为`./train``train/` 中包含了每个类别的数据,类别号从 0 开始,每个类别的文件夹中有具体的图像数据。
......@@ -113,7 +113,7 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml
-c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml
```
为了方便性能对比,我们也提供了大模型 SwinTransformer 和轻量模型 MobileNetV3 的配置文件,您可以使用命令训练:
......@@ -125,7 +125,7 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/person_exists/SwinTransformer_tiny_patch4_window7_224.yaml
-c ./ppcls/configs/PULC/person_exists/SwinTransformer_tiny_patch4_window7_224.yaml
```
MobileNetV3:
......@@ -167,7 +167,7 @@ SSLD 是百度自研的半监督蒸馏算法,在 ImageNet 数据集上,模
#### 3.4 SKL-UGI模型蒸馏
模型蒸馏是一种可以有效提升小模型精度的方法,您可以在[知识蒸馏介绍](../advanced_tutorials/knowledge_distillation.md)找到详细介绍。我们选择 ResNet101_vd 作为教师模型进行蒸馏。为了适应蒸馏过程,我们在此也对网络不同 stage 的学习率进行了调整。基于以上改进,我们训练得到模型精度为 95.6%,提升 1.4%。
模型蒸馏是一种可以有效提升小模型精度的方法,您可以在[知识蒸馏介绍](../advanced_tutorials/ssld.md)找到详细介绍。我们选择 ResNet101_vd 作为教师模型进行蒸馏。为了适应蒸馏过程,我们在此也对网络不同 stage 的学习率进行了调整。基于以上改进,我们训练得到模型精度为 95.6%,提升 1.4%。
<a name="3.5"></a>
......@@ -183,7 +183,7 @@ SSLD 是百度自研的半监督蒸馏算法,在 ImageNet 数据集上,模
| PPLCNet_x1_0 | 92.10 | 2.12 | 6.5 | 使用 SSLD 预训练模型 |
| PPLCNet_x1_0 | 93.43 | 2.12 | 6.5 | 使用 SSLD 预训练模型+EDA 策略|
| <b>PPLCNet_x1_0<b> | <b>95.60<b> | <b>2.12<b> | <b>6.5<b> | 使用 SSLD 预训练模型+EDA 策略+SKL-UGI 知识蒸馏策略|
我们在其他 8 个场景中也使用了同样的优化策略,得到如下结果:
| 场景 | 大模型 | 大模型精度(%) | 小模型 | 小模型精度(%) |
......@@ -196,12 +196,12 @@ SSLD 是百度自研的半监督蒸馏算法,在 ImageNet 数据集上,模
| 含文字图像方向分类 | SwinTransformer_tiny |99.12 | PPLCNet_x1_0 | 99.06 |
| 文本行方向分类 | SwinTransformer_tiny | 93.61 | PPLCNet_x1_0 | 96.01 |
| 语种分类 | SwinTransformer_tiny | 98.12 | PPLCNet_x1_0 | 99.26 |
从结果可以看出,PULC 方案在多个应用场景中均可提升模型精度。使用 PULC 方案可以大大减少模型优化的工作量,快速得到精度较高的模型。
<a name="4"></a>
### 4. 超参搜索
在上述训练过程中,我们调节了学习率、数据增广方法开启概率、分阶段学习率倍数等参数。
......@@ -209,11 +209,11 @@ SSLD 是百度自研的半监督蒸馏算法,在 ImageNet 数据集上,模
这个脚本会遍历搜索值列表中的参数来替代默认配置中的参数,依次训练,最终选择精度最高的模型所对应的参数作为搜索结果。
<a name="4.1"></a>
#### 4.1 基于默认配置搜索
配置文件 [search.yaml](../../ppcls/configs/PULC/person_exists/search.yaml) 定义了有人/无人场景超参搜索的配置,使用如下命令即可完成超参数的搜索。
```bash
python3 tools/search_strategy.py -c ppcls/configs/PULC/person_exists/search.yaml
```
......@@ -221,21 +221,21 @@ python3 tools/search_strategy.py -c ppcls/configs/PULC/person_exists/search.yaml
**备注**:关于搜索部分,我们也在不断优化,敬请期待。
<a name="4.2"></a>
#### 4.2 自定义搜索配置
您也可以根据训练结果或调参经验,修改超参搜索的配置。
修改 `lrs` 中的`search_values`字段,可以修改学习率搜索值列表;
修改 `resolutions` 中的 `search_values` 字段,可以修改分辨率的搜索值列表;
修改 `ra_probs` 中的 `search_values` 字段,可以修改 RandAugment 开启概率的搜索值列表;
修改 `re_probs` 中的 `search_values` 字段,可以修改 RnadomErasing 开启概率的搜索值列表;
修改 `lr_mult_list` 中的 `search_values` 字段,可以修改 lr_mult 搜索值列表;
修改 `teacher` 中的 `search_values` 字段,可以修改教师模型的搜索列表。
搜索完成后,会在 `output/search_person_exists` 中生成最终的结果,其中,除`search_res``output/search_person_exists` 中目录为对应的每个搜索的超参数的结果的权重和训练日志文件,`search_res` 对应的是蒸馏后的结果,也就是最终的模型,该模型的权重保存在`output/output_dir/search_person_exists/DistillationModel/best_model_student.pdparams`
\ No newline at end of file
搜索完成后,会在 `output/search_person_exists` 中生成最终的结果,其中,除`search_res``output/search_person_exists` 中目录为对应的每个搜索的超参数的结果的权重和训练日志文件,`search_res` 对应的是蒸馏后的结果,也就是最终的模型,该模型的权重保存在`output/output_dir/search_person_exists/DistillationModel/best_model_student.pdparams`
......@@ -271,7 +271,7 @@ python3 tools/infer.py \
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu)
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md)
<a name="4.1.1"></a>
......
......@@ -6,6 +6,7 @@
- [1. 算法介绍](#1)
- [1.1 知识蒸馏简介](#1.1)
- [1.2 SSLD蒸馏策略](#1.2)
- [1.2 SKL-UGI蒸馏策略](#1.3)
- [2. SSLD预训练模型库](#2)
- [3. SSLD使用](#3)
- [3.1 加载SSLD模型进行微调](#3.1)
......@@ -69,6 +70,13 @@ SSLD 蒸馏方案的一大特色就是无需使用图像的真值标签,因此
(4)将该数据集与 ImageNet1k 的训练集融合组成最终蒸馏模型所使用的数据集,数据量为 500 万。
<a name="1.3"></a>
此外,在无标注数据选择的过程中,我们发现使用更加通用的数据,即使不需要严格的数据筛选过程,也可以帮助知识蒸馏任务获得稳定的精度提升,因而提出了SKL-UGI (Symmetrical-KL Unlabeled General Images distillation)知识蒸馏方案。
通用数据可以使用ImageNet数据或者与场景相似的数据集。更多关于SKL-UGI的应用,请参考:[超轻量图像分类方案PULC使用教程](../PULC/PULC_train.md)
<a name="2"></a>
## 2. 预训练模型库
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册