提交 cc638a9d 编写于 作者: H HydrogenSulfate

update pretrained_model and inference model link in TIPC config and refine TIPC script

上级 099310ef
......@@ -36,7 +36,7 @@
| 模型 | recall@1(\%) | mAP(\%) | 参考recall@1(\%) | 参考mAP(\%) | 预训练模型下载地址 | inference模型下载地址 |
| -------- | ------------ | ------- |------------ | ------- | ------------------ | --------------------- |
| ResNet50_MetaBIN | 55.07 | 32.62 | 55.16 | 33.09 | [metabin_resnet50_pretrained.pdparams](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/reid/metabin/metabin_resnet50_pretrained.pdparams) | [metabin_resnet50_infer.tar](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/reid/metabin/metabin_resnet50_infer.tar) |
| ResNet50_MetaBIN | 55.25 | 32.97 | 55.16 | 33.09 | [metabin_resnet50_pretrained.pdparams](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/metric_learning/metabin/metabin_resnet50_pretrained.pdparams) | [metabin_resnet50_infer.tar](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/metric_learning/metabin/metabin_resnet50_infer.tar) |
接下来主要以`MetaBIN_ResNet50_cross_domain.yaml`配置和训练好的模型文件为例,展示在 Market1501 数据集上进行训练, 在 DukeMTMC-reID 数据集上测试、推理的过程。
......@@ -88,14 +88,14 @@
-o Global.pretrained_model="./output/RecModel/latest"
```
- 以训练好的模型为例,下载 [metabin_resnet50_pretrained.pdparams](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/reid/metabin/metabin_resnet50_pretrained.pdparams)`PaddleClas/pretrained_models` 文件夹中,执行如下命令即可进行评估。
- 以训练好的模型为例,下载 [metabin_resnet50_pretrained.pdparams](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/metric_learning/metabin/metabin_resnet50_pretrained.pdparams)`PaddleClas/pretrained_models` 文件夹中,执行如下命令即可进行评估。
```shell
# 下载模型
cd PaddleClas
mkdir pretrained_models
cd pretrained_models
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/reid/metabin/metabin_resnet50_pretrained.pdparams
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/metric_learning/metabin/metabin_resnet50_pretrained.pdparams
cd ..
# 评估
python3.7 tools/eval.py \
......@@ -118,10 +118,9 @@
ppcls INFO: query feature calculation process: [0/18]
ppcls INFO: Build query done, all feat shape: [2228, 2048]
ppcls INFO: re_ranking=False
ppcls INFO: [Eval][Epoch 0][Avg]recall1: 0.55072, recall5: 0.68492, recall10: 0.73698, mAP: 0.32624
ppcls INFO: [Eval][Epoch 0][Avg]recall1: 0.55251, recall5: 0.68268, recall10: 0.72756, mAP: 0.32977
```
默认评估日志保存在`PaddleClas/output/RecModel/eval.log`中,可以看到我们提供的 `metabin_resnet50_pretrained.pdparams` 模型在 SOP 数据集上的评估指标为recall@1=0.55072,recall@5=0.68492,recall@10=0.73698,mAP=0.32624
默认评估日志保存在`PaddleClas/output/RecModel/eval.log`中,可以看到我们提供的 `metabin_resnet50_pretrained.pdparams` 模型在 Market-1501 数据集上的评估指标为recall@1=0.55251,recall@5=0.68268,recall@10=0.72756,mAP=0.32977
- 使用re-ranking功能提升评估精度
......@@ -145,7 +144,7 @@
- 或者下载并解压我们提供的 inference 模型
```shell
cd ./deploy
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/reid/metabin/metabin_resnet50_infer.tar
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/metric_learning/metabin/metabin_resnet50_infer.tar
tar -xf metabin_resnet50_infer.tar
cd ../
```
......
===========================train_params===========================
model_name:RecModel
model_name:MetaBIN_ResNet50
python:python3.7
gpu_list:0
-o Global.device:gpu
......@@ -13,14 +13,14 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:amp_train
amp_train:tools/train.py -c ppcls/configs/reid/MetaBIN_ResNet50_cross_domain.yaml -o Global.seed=1234 -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.eval_during_train=False -o Global.save_interval=2 -o DataLoader.Train.sampler.num_instances=2 -o DataLoader.Metalearning.Train.sampler.batch_size=16 -o DataLoader.Metalearning.Train.sampler.num_instances=2
amp_train:tools/train.py -c ppcls/configs/reid/MetaBIN_ResNet50_cross_domain.yaml -o Global.seed=1234 -o DataLoader.Train.loader.num_workers=1 -o DataLoader.Train.loader.use_shared_memory=False -o Global.eval_during_train=False -o Global.save_interval=2 -o DataLoader.Train.sampler.num_instances=2 -o DataLoader.Metalearning.Train.sampler.batch_size=16 -o DataLoader.Metalearning.Train.sampler.num_instances=2
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/reid/MetaBIN_ResNet50_cross_domain.yaml
null:null
##
......@@ -33,7 +33,7 @@ fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/reid/metabin/metabin_resnet50_pretrained.pdparams
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/metric_learning/metabin/metabin_resnet50_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
......
===========================train_params===========================
model_name:RecModel
model_name:MetaBIN_ResNet50
python:python3.7
gpu_list:0
-o Global.device:gpu
......@@ -13,14 +13,14 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/reid/MetaBIN_ResNet50_cross_domain.yaml -o Global.seed=1234 -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.eval_during_train=False -o Global.save_interval=2 -o DataLoader.Train.sampler.num_instances=2 -o DataLoader.Metalearning.Train.sampler.batch_size=16 -o DataLoader.Metalearning.Train.sampler.num_instances=2 -o AMP=None
norm_train:tools/train.py -c ppcls/configs/reid/MetaBIN_ResNet50_cross_domain.yaml -o Global.seed=1234 -o DataLoader.Train.loader.num_workers=1 -o DataLoader.Train.loader.use_shared_memory=False -o Global.eval_during_train=False -o Global.save_interval=2 -o DataLoader.Train.sampler.num_instances=2 -o DataLoader.Metalearning.Train.sampler.batch_size=16 -o DataLoader.Metalearning.Train.sampler.num_instances=2 -o AMP=None
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/reid/MetaBIN_ResNet50_cross_domain.yaml
null:null
##
......@@ -33,7 +33,7 @@ fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/reid/metabin/metabin_resnet50_pretrained.pdparams
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/metric_learning/metabin/metabin_resnet50_pretrained.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
......
......@@ -197,6 +197,11 @@ if [[ ${MODE} = "lite_train_lite_infer" ]] || [[ ${MODE} = "lite_train_whole_inf
cd tipc_shitu_demo_data
ln -s demo_test.txt val_list.txt
cd ../../
elif [[ ${model_name} =~ "MetaBIN_ResNet50" ]]; then
cd dataset
wget -nc https://paddleclas.bj.bcebos.com/data/TIPC/duke_market.zip --no-check-certificate
unzip duke_market.zip
cd ../
else
# pretrain lite train data
cd dataset
......
......@@ -273,7 +273,7 @@ else
# export FLAGS_cudnn_deterministic=True
sleep 5
eval $cmd
if [[ $model_name == *GeneralRecognition* ]]; then
if [[ $model_name == *GeneralRecognition* ]] || [[ $model_name == *MetaBIN_ResNet50* ]]; then
eval "cat ${save_log}/RecModel/train.log >> ${save_log}.log"
else
eval "cat ${save_log}/${model_name}/train.log >> ${save_log}.log"
......@@ -281,7 +281,7 @@ else
status_check $? "${cmd}" "${status_log}" "${model_name}" "${save_log}.log"
sleep 5
if [[ $model_name == *GeneralRecognition* ]]; then
if [[ $model_name == *GeneralRecognition* ]] || [[ $model_name == *MetaBIN_ResNet50* ]]; then
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/RecModel/${train_model_name}")
else
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${model_name}/${train_model_name}")
......@@ -303,7 +303,7 @@ else
if [ ${run_export} != "null" ]; then
# run export model
save_infer_path="${save_log}"
if [[ $model_name == *GeneralRecognition* ]]; then
if [[ $model_name == *GeneralRecognition* ]] || [[ $model_name == *MetaBIN_ResNet50* ]]; then
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/RecModel/${train_model_name}")
else
set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${model_name}/${train_model_name}")
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册