未验证 提交 c870befb 编写于 作者: C cuicheng01 提交者: GitHub

Merge branch 'PaddlePaddle:develop' into develop

......@@ -20,9 +20,10 @@ import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear
from paddle.nn import Conv2D, BatchNorm, Linear, BatchNorm2D
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
from paddle.regularizer import L2Decay
import math
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
......@@ -132,11 +133,12 @@ class ConvBNLayer(TheseusLayer):
weight_attr=ParamAttr(learning_rate=lr_mult),
bias_attr=False,
data_format=data_format)
self.bn = BatchNorm(
num_filters,
param_attr=ParamAttr(learning_rate=lr_mult),
bias_attr=ParamAttr(learning_rate=lr_mult),
data_layout=data_format)
weight_attr = ParamAttr(learning_rate=lr_mult, trainable=True)
bias_attr = ParamAttr(learning_rate=lr_mult, trainable=True)
self.bn = BatchNorm2D(
num_filters, weight_attr=weight_attr, bias_attr=bias_attr)
self.relu = nn.ReLU()
def forward(self, x):
......@@ -192,6 +194,7 @@ class BottleneckBlock(TheseusLayer):
is_vd_mode=False if if_first else True,
lr_mult=lr_mult,
data_format=data_format)
self.relu = nn.ReLU()
self.shortcut = shortcut
......@@ -312,7 +315,7 @@ class ResNet(TheseusLayer):
[[input_image_channel, 32, 3, 2], [32, 32, 3, 1], [32, 64, 3, 1]]
}
self.stem = nn.Sequential(*[
self.stem = nn.Sequential(* [
ConvBNLayer(
num_channels=in_c,
num_filters=out_c,
......
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: "./output/"
device: "gpu"
save_interval: 5
eval_during_train: True
eval_interval: 1
epochs: 30
print_batch_step: 20
use_visualdl: False
# used for static mode and model export
image_shape: [3, 256, 192]
save_inference_dir: "./inference"
use_multilabel: True
# model architecture
Arch:
name: "ResNet50"
pretrained: True
class_num: 26
# loss function config for traing/eval process
Loss:
Train:
- MultiLabelLoss:
weight: 1.0
weight_ratio: True
size_sum: True
Eval:
- MultiLabelLoss:
weight: 1.0
weight_ratio: True
size_sum: True
Optimizer:
name: Adam
lr:
name: Piecewise
decay_epochs: [12, 18, 24, 28]
values: [0.0001, 0.00001, 0.000001, 0.0000001]
regularizer:
name: 'L2'
coeff: 0.0005
clip_norm: 10
# data loader for train and eval
DataLoader:
Train:
dataset:
name: MultiLabelDataset
image_root: "dataset/attribute/data/"
cls_label_path: "dataset/attribute/trainval.txt"
label_ratio: True
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [192, 256]
- Padv2:
size: [212, 276]
pad_mode: 1
fill_value: 0
- RandomCropImage:
size: [192, 256]
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: True
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: MultiLabelDataset
image_root: "dataset/attribute/data/"
cls_label_path: "dataset/attribute/test.txt"
label_ratio: True
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [192, 256]
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Metric:
Eval:
- ATTRMetric:
......@@ -44,11 +44,11 @@ def create_operators(params):
class CommonDataset(Dataset):
def __init__(
self,
image_root,
cls_label_path,
transform_ops=None, ):
def __init__(self,
image_root,
cls_label_path,
transform_ops=None,
label_ratio=False):
self._img_root = image_root
self._cls_path = cls_label_path
if transform_ops:
......@@ -56,7 +56,10 @@ class CommonDataset(Dataset):
self.images = []
self.labels = []
self._load_anno()
if label_ratio:
self.label_ratio = self._load_anno(label_ratio=label_ratio)
else:
self._load_anno()
def _load_anno(self):
pass
......
......@@ -25,7 +25,7 @@ from .common_dataset import CommonDataset
class MultiLabelDataset(CommonDataset):
def _load_anno(self):
def _load_anno(self, label_ratio=False):
assert os.path.exists(self._cls_path)
assert os.path.exists(self._img_root)
self.images = []
......@@ -41,6 +41,8 @@ class MultiLabelDataset(CommonDataset):
self.labels.append(labels)
assert os.path.exists(self.images[-1])
if label_ratio:
return np.array(self.labels).mean(0).astype("float32")
def __getitem__(self, idx):
try:
......@@ -50,7 +52,10 @@ class MultiLabelDataset(CommonDataset):
img = transform(img, self._transform_ops)
img = img.transpose((2, 0, 1))
label = np.array(self.labels[idx]).astype("float32")
return (img, label)
if self.label_ratio is not None:
return (img, np.array([label, self.label_ratio]))
else:
return (img, label)
except Exception as ex:
logger.error("Exception occured when parse line: {} with msg: {}".
......
......@@ -33,6 +33,8 @@ from ppcls.data.preprocess.ops.operators import AugMix
from ppcls.data.preprocess.ops.operators import Pad
from ppcls.data.preprocess.ops.operators import ToTensor
from ppcls.data.preprocess.ops.operators import Normalize
from ppcls.data.preprocess.ops.operators import RandomCropImage
from ppcls.data.preprocess.ops.operators import Padv2
from ppcls.data.preprocess.batch_ops.batch_operators import MixupOperator, CutmixOperator, OpSampler, FmixOperator
......@@ -40,6 +42,7 @@ import numpy as np
from PIL import Image
import random
def transform(data, ops=[]):
""" transform """
for op in ops:
......
......@@ -190,6 +190,105 @@ class CropImage(object):
return img[h_start:h_end, w_start:w_end, :]
class Padv2(object):
def __init__(self,
size=None,
size_divisor=32,
pad_mode=0,
offsets=None,
fill_value=(127.5, 127.5, 127.5)):
"""
Pad image to a specified size or multiple of size_divisor.
Args:
size (int, list): image target size, if None, pad to multiple of size_divisor, default None
size_divisor (int): size divisor, default 32
pad_mode (int): pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
if 0, only pad to right and bottom. if 1, pad according to center. if 2, only pad left and top
offsets (list): [offset_x, offset_y], specify offset while padding, only supported pad_mode=-1
fill_value (bool): rgb value of pad area, default (127.5, 127.5, 127.5)
"""
if not isinstance(size, (int, list)):
raise TypeError(
"Type of target_size is invalid when random_size is True. \
Must be List, now is {}".format(type(size)))
if isinstance(size, int):
size = [size, size]
assert pad_mode in [
-1, 0, 1, 2
], 'currently only supports four modes [-1, 0, 1, 2]'
if pad_mode == -1:
assert offsets, 'if pad_mode is -1, offsets should not be None'
self.size = size
self.size_divisor = size_divisor
self.pad_mode = pad_mode
self.fill_value = fill_value
self.offsets = offsets
def apply_image(self, image, offsets, im_size, size):
x, y = offsets
im_h, im_w = im_size
h, w = size
canvas = np.ones((h, w, 3), dtype=np.float32)
canvas *= np.array(self.fill_value, dtype=np.float32)
canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
return canvas
def __call__(self, img):
im_h, im_w = img.shape[:2]
if self.size:
w, h = self.size
assert (
im_h <= h and im_w <= w
), '(h, w) of target size should be greater than (im_h, im_w)'
else:
h = int(np.ceil(im_h / self.size_divisor) * self.size_divisor)
w = int(np.ceil(im_w / self.size_divisor) * self.size_divisor)
if h == im_h and w == im_w:
return img.astype(np.float32)
if self.pad_mode == -1:
offset_x, offset_y = self.offsets
elif self.pad_mode == 0:
offset_y, offset_x = 0, 0
elif self.pad_mode == 1:
offset_y, offset_x = (h - im_h) // 2, (w - im_w) // 2
else:
offset_y, offset_x = h - im_h, w - im_w
offsets, im_size, size = [offset_x, offset_y], [im_h, im_w], [h, w]
return self.apply_image(img, offsets, im_size, size)
class RandomCropImage(object):
"""Random crop image only
"""
def __init__(self, size):
super(RandomCropImage, self).__init__()
if isinstance(size, int):
size = [size, size]
self.size = size
def __call__(self, img):
h, w = img.shape[:2]
tw, th = self.size
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
img = img[i:i + th, j:j + tw, :]
if img.shape[0] != 256 or img.shape[1] != 192:
raise ValueError('sample: ', h, w, i, j, th, tw, img.shape)
return img
class RandCropImage(object):
""" random crop image """
......@@ -463,8 +562,8 @@ class Pad(object):
# Process fill color for affine transforms
major_found, minor_found = (int(v)
for v in PILLOW_VERSION.split('.')[:2])
major_required, minor_required = (
int(v) for v in min_pil_version.split('.')[:2])
major_required, minor_required = (int(v) for v in
min_pil_version.split('.')[:2])
if major_found < major_required or (major_found == major_required and
minor_found < minor_required):
if fill is None:
......
......@@ -82,6 +82,7 @@ def classification_eval(engine, epoch_id=0):
# gather Tensor when distributed
if paddle.distributed.get_world_size() > 1:
label_list = []
paddle.distributed.all_gather(label_list, batch[1])
labels = paddle.concat(label_list, 0)
......@@ -123,6 +124,7 @@ def classification_eval(engine, epoch_id=0):
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(loss_dict[key].numpy()[0],
current_samples)
# calc metric
if engine.eval_metric_func is not None:
engine.eval_metric_func(preds, labels)
......@@ -137,11 +139,14 @@ def classification_eval(engine, epoch_id=0):
ips_msg = "ips: {:.5f} images/sec".format(
batch_size / time_info["batch_cost"].avg)
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].val)
for key in output_info
])
metric_msg += ", {}".format(engine.eval_metric_func.avg_info)
if "ATTRMetric" in engine.config["Metric"]["Eval"][0]:
metric_msg = ""
else:
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].val)
for key in output_info
])
metric_msg += ", {}".format(engine.eval_metric_func.avg_info)
logger.info("[Eval][Epoch {}][Iter: {}/{}]{}, {}, {}".format(
epoch_id, iter_id,
len(engine.eval_dataloader), metric_msg, time_msg, ips_msg))
......@@ -149,14 +154,29 @@ def classification_eval(engine, epoch_id=0):
tic = time.time()
if engine.use_dali:
engine.eval_dataloader.reset()
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].avg) for key in output_info
])
metric_msg += ", {}".format(engine.eval_metric_func.avg_info)
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
# do not try to save best eval.model
if engine.eval_metric_func is None:
return -1
# return 1st metric in the dict
return engine.eval_metric_func.avg
if "ATTRMetric" in engine.config["Metric"]["Eval"][0]:
metric_msg = ", ".join([
"evalres: ma: {:.5f} label_f1: {:.5f} label_pos_recall: {:.5f} label_neg_recall: {:.5f} instance_f1: {:.5f} instance_acc: {:.5f} instance_prec: {:.5f} instance_recall: {:.5f}".
format(*engine.eval_metric_func.attr_res())
])
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
# do not try to save best eval.model
if engine.eval_metric_func is None:
return -1
# return 1st metric in the dict
return engine.eval_metric_func.attr_res()[0]
else:
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].avg)
for key in output_info
])
metric_msg += ", {}".format(engine.eval_metric_func.avg_info)
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
# do not try to save best eval.model
if engine.eval_metric_func is None:
return -1
# return 1st metric in the dict
return engine.eval_metric_func.avg
......@@ -3,16 +3,29 @@ import paddle.nn as nn
import paddle.nn.functional as F
def ratio2weight(targets, ratio):
pos_weights = targets * (1. - ratio)
neg_weights = (1. - targets) * ratio
weights = paddle.exp(neg_weights + pos_weights)
# for RAP dataloader, targets element may be 2, with or without smooth, some element must great than 1
weights = weights - weights * (targets > 1)
return weights
class MultiLabelLoss(nn.Layer):
"""
Multi-label loss
"""
def __init__(self, epsilon=None):
def __init__(self, epsilon=None, size_sum=False, weight_ratio=False):
super().__init__()
if epsilon is not None and (epsilon <= 0 or epsilon >= 1):
epsilon = None
self.epsilon = epsilon
self.weight_ratio = weight_ratio
self.size_sum = size_sum
def _labelsmoothing(self, target, class_num):
if target.ndim == 1 or target.shape[-1] != class_num:
......@@ -24,13 +37,21 @@ class MultiLabelLoss(nn.Layer):
return soft_target
def _binary_crossentropy(self, input, target, class_num):
if self.weight_ratio:
target, label_ratio = target[:, 0, :], target[:, 1, :]
if self.epsilon is not None:
target = self._labelsmoothing(target, class_num)
cost = F.binary_cross_entropy_with_logits(
logit=input, label=target)
else:
cost = F.binary_cross_entropy_with_logits(
logit=input, label=target)
cost = F.binary_cross_entropy_with_logits(
logit=input, label=target, reduction='none')
if self.weight_ratio:
targets_mask = paddle.cast(target > 0.5, 'float32')
weight = ratio2weight(targets_mask, paddle.to_tensor(label_ratio))
weight = weight * (target > -1)
cost = cost * weight
if self.size_sum:
cost = cost.sum(1).mean() if self.size_sum else cost.mean()
return cost
......
......@@ -20,6 +20,7 @@ from .metrics import TopkAcc, mAP, mINP, Recallk, Precisionk
from .metrics import DistillationTopkAcc
from .metrics import GoogLeNetTopkAcc
from .metrics import HammingDistance, AccuracyScore
from .metrics import ATTRMetric
from .metrics import TprAtFpr
......@@ -55,12 +56,15 @@ class CombinedMetrics(AvgMetrics):
def avg(self):
return self.metric_func_list[0].avg
def attr_res(self):
return self.metric_func_list[0].attrmeter.res()
def reset(self):
for metric in self.metric_func_list:
if hasattr(metric, "reset"):
metric.reset()
def build_metrics(config):
metrics_list = CombinedMetrics(copy.deepcopy(config))
return metrics_list
......@@ -22,8 +22,10 @@ from sklearn.metrics import accuracy_score as accuracy_metric
from sklearn.metrics import multilabel_confusion_matrix
from sklearn.preprocessing import binarize
from easydict import EasyDict
from ppcls.metric.avg_metrics import AvgMetrics
from ppcls.utils.misc import AverageMeter
from ppcls.utils.misc import AverageMeter, AttrMeter
class TopkAcc(AvgMetrics):
......@@ -36,7 +38,10 @@ class TopkAcc(AvgMetrics):
self.reset()
def reset(self):
self.avg_meters = {"top{}".format(k): AverageMeter("top{}".format(k)) for k in self.topk}
self.avg_meters = {
"top{}".format(k): AverageMeter("top{}".format(k))
for k in self.topk
}
def forward(self, x, label):
if isinstance(x, dict):
......@@ -46,7 +51,8 @@ class TopkAcc(AvgMetrics):
for k in self.topk:
metric_dict["top{}".format(k)] = paddle.metric.accuracy(
x, label, k=k)
self.avg_meters["top{}".format(k)].update(metric_dict["top{}".format(k)].numpy()[0], x.shape[0])
self.avg_meters["top{}".format(k)].update(
metric_dict["top{}".format(k)].numpy()[0], x.shape[0])
return metric_dict
......@@ -116,7 +122,7 @@ class mINP(nn.Layer):
choosen_indices)
equal_flag = paddle.equal(choosen_label, query_img_id)
if keep_mask is not None:
keep_mask = paddle.index_sample(
keep_mask = paddle.indechmx_sample(
keep_mask.astype('float32'), choosen_indices)
equal_flag = paddle.logical_and(equal_flag,
keep_mask.astype('bool'))
......@@ -140,7 +146,7 @@ class mINP(nn.Layer):
class TprAtFpr(nn.Layer):
def __init__(self, max_fpr=1/1000.):
def __init__(self, max_fpr=1 / 1000.):
super().__init__()
self.gt_pos_score_list = []
self.gt_neg_score_list = []
......@@ -178,14 +184,18 @@ class TprAtFpr(nn.Layer):
threshold = i / 10000.
if len(gt_pos_score_list) == 0:
continue
tpr = np.sum(gt_pos_score_list > threshold) / len(gt_pos_score_list)
tpr = np.sum(
gt_pos_score_list > threshold) / len(gt_pos_score_list)
if len(gt_neg_score_list) == 0 and tpr > max_tpr:
max_tpr = tpr
result = "threshold: {}, fpr: {}, tpr: {:.5f}".format(threshold, fpr, tpr)
fpr = np.sum(gt_neg_score_list > threshold) / len(gt_neg_score_list)
result = "threshold: {}, fpr: {}, tpr: {:.5f}".format(
threshold, fpr, tpr)
fpr = np.sum(
gt_neg_score_list > threshold) / len(gt_neg_score_list)
if fpr <= self.max_fpr and tpr > max_tpr:
max_tpr = tpr
result = "threshold: {}, fpr: {}, tpr: {:.5f}".format(threshold, fpr, tpr)
result = "threshold: {}, fpr: {}, tpr: {:.5f}".format(
threshold, fpr, tpr)
self.max_tpr = max_tpr
return result
......@@ -333,7 +343,8 @@ class HammingDistance(MultiLabelMetric):
metric_dict = dict()
metric_dict["HammingDistance"] = paddle.to_tensor(
hamming_loss(target, preds))
self.avg_meters["HammingDistance"].update(metric_dict["HammingDistance"].numpy()[0], output.shape[0])
self.avg_meters["HammingDistance"].update(
metric_dict["HammingDistance"].numpy()[0], output.shape[0])
return metric_dict
......@@ -372,5 +383,66 @@ class AccuracyScore(MultiLabelMetric):
accuracy = (sum(tps) + sum(tns)) / (
sum(tps) + sum(tns) + sum(fns) + sum(fps))
metric_dict["AccuracyScore"] = paddle.to_tensor(accuracy)
self.avg_meters["AccuracyScore"].update(metric_dict["AccuracyScore"].numpy()[0], output.shape[0])
self.avg_meters["AccuracyScore"].update(
metric_dict["AccuracyScore"].numpy()[0], output.shape[0])
return metric_dict
def get_attr_metrics(gt_label, preds_probs, threshold):
"""
index: evaluated label index
"""
pred_label = (preds_probs > threshold).astype(int)
eps = 1e-20
result = EasyDict()
has_fuyi = gt_label == -1
pred_label[has_fuyi] = -1
###############################
# label metrics
# TP + FN
result.gt_pos = np.sum((gt_label == 1), axis=0).astype(float)
# TN + FP
result.gt_neg = np.sum((gt_label == 0), axis=0).astype(float)
# TP
result.true_pos = np.sum((gt_label == 1) * (pred_label == 1),
axis=0).astype(float)
# TN
result.true_neg = np.sum((gt_label == 0) * (pred_label == 0),
axis=0).astype(float)
# FP
result.false_pos = np.sum(((gt_label == 0) * (pred_label == 1)),
axis=0).astype(float)
# FN
result.false_neg = np.sum(((gt_label == 1) * (pred_label == 0)),
axis=0).astype(float)
################
# instance metrics
result.gt_pos_ins = np.sum((gt_label == 1), axis=1).astype(float)
result.true_pos_ins = np.sum((pred_label == 1), axis=1).astype(float)
# true positive
result.intersect_pos = np.sum((gt_label == 1) * (pred_label == 1),
axis=1).astype(float)
# IOU
result.union_pos = np.sum(((gt_label == 1) + (pred_label == 1)),
axis=1).astype(float)
return result
class ATTRMetric(nn.Layer):
def __init__(self, threshold=0.5):
super().__init__()
self.threshold = threshold
def reset(self):
self.attrmeter = AttrMeter(threshold=0.5)
def forward(self, output, target):
metric_dict = get_attr_metrics(target[:, 0, :].numpy(),
output.numpy(), self.threshold)
self.attrmeter.update(metric_dict)
return metric_dict
......@@ -65,3 +65,87 @@ class AverageMeter(object):
def value(self):
return '{self.name}: {self.val:{self.fmt}}{self.postfix}'.format(
self=self)
class AttrMeter(object):
"""
Computes and stores the average and current value
Code was based on https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
def __init__(self, threshold=0.5):
self.threshold = threshold
self.reset()
def reset(self):
self.gt_pos = 0
self.gt_neg = 0
self.true_pos = 0
self.true_neg = 0
self.false_pos = 0
self.false_neg = 0
self.gt_pos_ins = []
self.true_pos_ins = []
self.intersect_pos = []
self.union_pos = []
def update(self, metric_dict):
self.gt_pos += metric_dict['gt_pos']
self.gt_neg += metric_dict['gt_neg']
self.true_pos += metric_dict['true_pos']
self.true_neg += metric_dict['true_neg']
self.false_pos += metric_dict['false_pos']
self.false_neg += metric_dict['false_neg']
self.gt_pos_ins += metric_dict['gt_pos_ins'].tolist()
self.true_pos_ins += metric_dict['true_pos_ins'].tolist()
self.intersect_pos += metric_dict['intersect_pos'].tolist()
self.union_pos += metric_dict['union_pos'].tolist()
def res(self):
import numpy as np
eps = 1e-20
label_pos_recall = 1.0 * self.true_pos / (
self.gt_pos + eps) # true positive
label_neg_recall = 1.0 * self.true_neg / (
self.gt_neg + eps) # true negative
# mean accuracy
label_ma = (label_pos_recall + label_neg_recall) / 2
label_pos_recall = np.mean(label_pos_recall)
label_neg_recall = np.mean(label_neg_recall)
label_prec = (self.true_pos / (self.true_pos + self.false_pos + eps))
label_acc = (self.true_pos /
(self.true_pos + self.false_pos + self.false_neg + eps))
label_f1 = np.mean(2 * label_prec * label_pos_recall /
(label_prec + label_pos_recall + eps))
ma = (np.mean(label_ma))
self.gt_pos_ins = np.array(self.gt_pos_ins)
self.true_pos_ins = np.array(self.true_pos_ins)
self.intersect_pos = np.array(self.intersect_pos)
self.union_pos = np.array(self.union_pos)
instance_acc = self.intersect_pos / (self.union_pos + eps)
instance_prec = self.intersect_pos / (self.true_pos_ins + eps)
instance_recall = self.intersect_pos / (self.gt_pos_ins + eps)
instance_f1 = 2 * instance_prec * instance_recall / (
instance_prec + instance_recall + eps)
instance_acc = np.mean(instance_acc)
instance_prec = np.mean(instance_prec)
instance_recall = np.mean(instance_recall)
instance_f1 = 2 * instance_prec * instance_recall / (
instance_prec + instance_recall + eps)
instance_acc = np.mean(instance_acc)
instance_prec = np.mean(instance_prec)
instance_recall = np.mean(instance_recall)
instance_f1 = np.mean(instance_f1)
res = [
ma, label_f1, label_pos_recall, label_neg_recall, instance_f1,
instance_acc, instance_prec, instance_recall
]
return res
......@@ -9,3 +9,4 @@ scipy
scikit-learn==0.23.2
gast==0.3.3
faiss-cpu==1.7.1.post2
easydict
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册