未验证 提交 bcd491e1 编写于 作者: C cuicheng01 提交者: GitHub

Merge pull request #2032 from TingquanGao/add_pulc_safetyhelmet

docs: update metrics
......@@ -44,13 +44,13 @@
|-------|-----------|----------|---------------|---------------|
| SwinTranformer_tiny | 93.57 | 91.32 | 107 | 使用ImageNet预训练模型 |
| Res2Net200_vd_26w_4s | 98.92 | 80.99 | 284 | 使用ImageNet预训练模型 |
| MobileNetV3_small_x0_35 | 96.50 | 2.85 | 1.6 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 93.29 | 2.03 | 6.5 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 98.07 | 2.03 | 6.5 | 使用SSLD预训练模型 |
| MobileNetV3_small_x0_35 | 84.83 | 2.85 | 1.6 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 93.27 | 2.03 | 6.5 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 98.16 | 2.03 | 6.5 | 使用SSLD预训练模型 |
| PPLCNet_x1_0 | 99.30 | 2.03 | 6.5 | 使用SSLD预训练模型+EDA策略|
| <b>PPLCNet_x1_0<b> | <b>99.38<b> | <b>2.03<b> | <b>6.5<b> | 使用SSLD预训练模型+EDA策略+UDML知识蒸馏策略|
从表中可以看出,在使用服务器端大模型作为 backbone 时,SwinTranformer_tiny 精度较低,Res2Net200_vd_26w_4s 精度较高,但服务器端大模型推理速度普遍较慢。将 backboone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是精度显著降低。在将 backbone 替换为 PPLCNet_x1_0,精度较 MobileNetV3_small_x0_35 提高约 30 个百分点,与此同时速度快 20% 以上。在此基础上,将 PPLCNet_x1_0 的预训练模型替换为 SSLD 预训练模型后,在对推理速度无影响的前提下,精度提升约 4.8 个百分点,进一步地使用 EDA 策略后,精度可以再提升 0.7 个百分点。此时,PPLCNet_x1_0 已经接近了 Res2Net200_vd_26w_4s 模型的精度,但是速度快 70+ 倍。最后,在使用 UDML 知识蒸馏后,精度可以再提升 0.5 个百分点。此时,PPLCNet_x1_0 已经超过了 Res2Net200_vd_26w_4s 模型的精度,但速度是其 70 余倍。下面详细介绍关于 PULC 安全帽模型的训练方法和推理部署方法。
从表中可以看出,在使用服务器端大模型作为 backbone 时,SwinTranformer_tiny 精度较低,Res2Net200_vd_26w_4s 精度较高,但服务器端大模型推理速度普遍较慢。将 backboone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是精度显著降低。在将 backbone 替换为 PPLCNet_x1_0 后,精度较 MobileNetV3_small_x0_35 提高约 8.5 个百分点,与此同时速度快 20% 以上。在此基础上,将 PPLCNet_x1_0 的预训练模型替换为 SSLD 预训练模型后,在对推理速度无影响的前提下,精度提升约 4.9 个百分点,进一步地使用 EDA 策略后,精度可以再提升 1.1 个百分点。此时,PPLCNet_x1_0 已经超过 Res2Net200_vd_26w_4s 模型的精度,但是速度快 70+ 倍。最后,在使用 UDML 知识蒸馏后,精度可以再提升 0.08 个百分点。下面详细介绍关于 PULC 安全帽模型的训练方法和推理部署方法。
**备注:**
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册