未验证 提交 bbf99cf2 编写于 作者: L littletomatodonkey 提交者: GitHub

add dali (#406)

add dali
上级 de73d276
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import os
import numpy as np
from nvidia.dali.pipeline import Pipeline
import nvidia.dali.ops as ops
import nvidia.dali.types as types
from nvidia.dali.plugin.paddle import DALIGenericIterator
import paddle
from paddle import fluid
class HybridTrainPipe(Pipeline):
def __init__(self,
file_root,
file_list,
batch_size,
resize_shorter,
crop,
min_area,
lower,
upper,
interp,
mean,
std,
device_id,
shard_id=0,
num_shards=1,
random_shuffle=True,
num_threads=4,
seed=42):
super(HybridTrainPipe, self).__init__(
batch_size, num_threads, device_id, seed=seed)
self.input = ops.FileReader(
file_root=file_root,
file_list=file_list,
shard_id=shard_id,
num_shards=num_shards,
random_shuffle=random_shuffle)
# set internal nvJPEG buffers size to handle full-sized ImageNet images
# without additional reallocations
device_memory_padding = 211025920
host_memory_padding = 140544512
self.decode = ops.ImageDecoderRandomCrop(
device='mixed',
output_type=types.RGB,
device_memory_padding=device_memory_padding,
host_memory_padding=host_memory_padding,
random_aspect_ratio=[lower, upper],
random_area=[min_area, 1.0],
num_attempts=100)
self.res = ops.Resize(
device='gpu', resize_x=crop, resize_y=crop, interp_type=interp)
self.cmnp = ops.CropMirrorNormalize(
device="gpu",
output_dtype=types.FLOAT,
output_layout=types.NCHW,
crop=(crop, crop),
image_type=types.RGB,
mean=mean,
std=std)
self.coin = ops.CoinFlip(probability=0.5)
self.to_int64 = ops.Cast(dtype=types.INT64, device="gpu")
def define_graph(self):
rng = self.coin()
jpegs, labels = self.input(name="Reader")
images = self.decode(jpegs)
images = self.res(images)
output = self.cmnp(images.gpu(), mirror=rng)
return [output, self.to_int64(labels.gpu())]
def __len__(self):
return self.epoch_size("Reader")
class HybridValPipe(Pipeline):
def __init__(self,
file_root,
file_list,
batch_size,
resize_shorter,
crop,
interp,
mean,
std,
device_id,
shard_id=0,
num_shards=1,
random_shuffle=False,
num_threads=4,
seed=42):
super(HybridValPipe, self).__init__(
batch_size, num_threads, device_id, seed=seed)
self.input = ops.FileReader(
file_root=file_root,
file_list=file_list,
shard_id=shard_id,
num_shards=num_shards,
random_shuffle=random_shuffle)
self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)
self.res = ops.Resize(
device="gpu", resize_shorter=resize_shorter, interp_type=interp)
self.cmnp = ops.CropMirrorNormalize(
device="gpu",
output_dtype=types.FLOAT,
output_layout=types.NCHW,
crop=(crop, crop),
image_type=types.RGB,
mean=mean,
std=std)
self.to_int64 = ops.Cast(dtype=types.INT64, device="gpu")
def define_graph(self):
jpegs, labels = self.input(name="Reader")
images = self.decode(jpegs)
images = self.res(images)
output = self.cmnp(images)
return [output, self.to_int64(labels.gpu())]
def __len__(self):
return self.epoch_size("Reader")
def build(config, mode='train'):
env = os.environ
assert config.get('use_gpu',
True) == True, "gpu training is required for DALI"
assert not config.get(
'use_aa'), "auto augment is not supported by DALI reader"
assert float(env.get('FLAGS_fraction_of_gpu_memory_to_use', 0.92)) < 0.9, \
"Please leave enough GPU memory for DALI workspace, e.g., by setting" \
" `export FLAGS_fraction_of_gpu_memory_to_use=0.8`"
dataset_config = config[mode.upper()]
gpu_num = paddle.fluid.core.get_cuda_device_count() if (
'PADDLE_TRAINERS_NUM') and (
'PADDLE_TRAINER_ID'
) not in env else int(env.get('PADDLE_TRAINERS_NUM', 0))
batch_size = dataset_config.batch_size
assert batch_size % gpu_num == 0, \
"batch size must be multiple of number of devices"
batch_size = batch_size // gpu_num
file_root = dataset_config.data_dir
file_list = dataset_config.file_list
interp = 1 # settings.interpolation or 1 # default to linear
interp_map = {
0: types.INTERP_NN, # cv2.INTER_NEAREST
1: types.INTERP_LINEAR, # cv2.INTER_LINEAR
2: types.INTERP_CUBIC, # cv2.INTER_CUBIC
4: types.INTERP_LANCZOS3, # XXX use LANCZOS3 for cv2.INTER_LANCZOS4
}
assert interp in interp_map, "interpolation method not supported by DALI"
interp = interp_map[interp]
transforms = {
k: v
for d in dataset_config["transforms"] for k, v in d.items()
}
scale = transforms["NormalizeImage"].get("scale", 1.0 / 255)
if isinstance(scale, str):
scale = eval(scale)
mean = transforms["NormalizeImage"].get("mean", [0.485, 0.456, 0.406])
std = transforms["NormalizeImage"].get("std", [0.229, 0.224, 0.225])
mean = [v / scale for v in mean]
std = [v / scale for v in std]
if mode == "train":
resize_shorter = 256
crop = transforms["RandCropImage"]["size"]
scale = transforms["RandCropImage"].get("scale", [0.08, 1.])
ratio = transforms["RandCropImage"].get("ratio", [3.0 / 4, 4.0 / 3])
min_area = scale[0]
lower = ratio[0]
upper = ratio[1]
if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env:
shard_id = int(env['PADDLE_TRAINER_ID'])
num_shards = int(env['PADDLE_TRAINERS_NUM'])
device_id = int(env['FLAGS_selected_gpus'])
pipe = HybridTrainPipe(
file_root,
file_list,
batch_size,
resize_shorter,
crop,
min_area,
lower,
upper,
interp,
mean,
std,
device_id,
shard_id,
num_shards,
seed=42 + shard_id)
pipe.build()
pipelines = [pipe]
sample_per_shard = len(pipe) // num_shards
else:
pipelines = []
places = fluid.framework.cuda_places()
num_shards = len(places)
for idx, p in enumerate(places):
place = fluid.core.Place()
place.set_place(p)
device_id = place.gpu_device_id()
pipe = HybridTrainPipe(
file_root,
file_list,
batch_size,
resize_shorter,
crop,
min_area,
lower,
upper,
interp,
mean,
std,
device_id,
idx,
num_shards,
seed=42 + idx)
pipe.build()
pipelines.append(pipe)
sample_per_shard = len(pipelines[0])
return DALIGenericIterator(
pipelines, ['feed_image', 'feed_label'], size=sample_per_shard)
else:
resize_shorter = transforms["ResizeImage"].get("resize_short", 256)
crop = transforms["CropImage"]["size"]
p = fluid.framework.cuda_places()[0]
place = fluid.core.Place()
place.set_place(p)
device_id = place.gpu_device_id()
pipe = HybridValPipe(
file_root,
file_list,
batch_size,
resize_shorter,
crop,
interp,
mean,
std,
device_id=device_id)
pipe.build()
return DALIGenericIterator(
pipe, ['feed_image', 'feed_label'],
size=len(pipe),
dynamic_shape=True,
fill_last_batch=True,
last_batch_padded=True)
def train(config):
return build(config, 'train')
def val(config):
return build(config, 'valid')
def _to_Tensor(lod_tensor, dtype):
data_tensor = fluid.layers.create_tensor(dtype=dtype)
data = np.array(lod_tensor).astype(dtype)
fluid.layers.assign(data, data_tensor)
return data_tensor
def normalize(feeds, config):
image, label = feeds['image'], feeds['label']
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
image = fluid.layers.cast(image, 'float32')
costant = fluid.layers.fill_constant(
shape=[1], value=255.0, dtype='float32')
image = fluid.layers.elementwise_div(image, costant)
mean = fluid.layers.create_tensor(dtype="float32")
fluid.layers.assign(input=img_mean.astype("float32"), output=mean)
std = fluid.layers.create_tensor(dtype="float32")
fluid.layers.assign(input=img_std.astype("float32"), output=std)
image = fluid.layers.elementwise_sub(image, mean)
image = fluid.layers.elementwise_div(image, std)
image.stop_gradient = True
feeds['image'] = image
return feeds
def mix(feeds, config, is_train=True):
env = os.environ
gpu_num = paddle.fluid.core.get_cuda_device_count() if (
'PADDLE_TRAINERS_NUM') and (
'PADDLE_TRAINER_ID'
) not in env else int(env.get('PADDLE_TRAINERS_NUM', 0))
batch_size = config.TRAIN.batch_size // gpu_num
images = feeds['image']
label = feeds['label']
# TODO: hard code here, should be fixed!
alpha = 0.2
idx = _to_Tensor(np.random.permutation(batch_size), 'int32')
lam = np.random.beta(alpha, alpha)
images = lam * images + (1 - lam) * paddle.fluid.layers.gather(images, idx)
feed = {
'image': images,
'feed_y_a': label,
'feed_y_b': paddle.fluid.layers.gather(label, idx),
'feed_lam': _to_Tensor([lam] * batch_size, 'float32')
}
return feed if is_train else feeds
......@@ -41,7 +41,7 @@ import paddle.fluid as fluid
from ema import ExponentialMovingAverage
def create_feeds(image_shape, use_mix=None):
def create_feeds(image_shape, use_mix=None, use_dali=None):
"""
Create feeds as model input
......@@ -55,7 +55,8 @@ def create_feeds(image_shape, use_mix=None):
feeds = OrderedDict()
feeds['image'] = fluid.data(
name="feed_image", shape=[None] + image_shape, dtype="float32")
if use_mix:
if use_mix and not use_dali:
feeds['feed_y_a'] = fluid.data(
name="feed_y_a", shape=[None, 1], dtype="int64")
feeds['feed_y_b'] = fluid.data(
......@@ -110,7 +111,7 @@ def create_model(architecture, image, classes_num, is_train):
params['is_test'] = not is_train
model = architectures.__dict__[name](**params)
if "data_format" in params and params["data_format"] == "NHWC":
if "data_format" in params and params["data_format"] == "NHWC":
image = fluid.layers.transpose(image, [0, 2, 3, 1])
image.stop_gradient = True
out = model.net(input=image, class_dim=classes_num)
......@@ -344,10 +345,16 @@ def build(config, main_prog, startup_prog, is_train=True, is_distributed=True):
with fluid.program_guard(main_prog, startup_prog):
with fluid.unique_name.guard():
use_mix = config.get('use_mix') and is_train
use_dali = config.get('use_dali')
use_distillation = config.get('use_distillation')
feeds = create_feeds(config.image_shape, use_mix=use_mix)
dataloader = create_dataloader(feeds.values())
feeds = create_feeds(config.image_shape, use_mix, use_dali)
if use_dali and use_mix:
import dali
feeds = dali.mix(feeds, config, is_train)
dataloader = create_dataloader(feeds.values()) if not config.get(
'use_dali') else None
out = create_model(config.ARCHITECTURE, feeds['image'],
config.classes_num, is_train)
fetchs = create_fetchs(
......@@ -418,21 +425,22 @@ def compile(config, program, loss_name=None, share_prog=None):
except Exception as e:
logger.info(
"PaddlePaddle version 1.7.0 or higher is "
"required when you want to fuse elewise_add_act and activation_op.")
"required when you want to fuse elewise_add_act and activation_op."
)
try:
build_strategy.fuse_bn_add_act_ops = fuse_bn_add_act_ops
except Exception as e:
logger.info(
"PaddlePaddle 2.0-rc or higher is "
"required when you want to enable fuse_bn_add_act_ops strategy.")
"required when you want to enable fuse_bn_add_act_ops strategy."
)
try:
build_strategy.enable_addto = enable_addto
except Exception as e:
logger.info(
"PaddlePaddle 2.0-rc or higher is "
"required when you want to enable addto strategy.")
logger.info("PaddlePaddle 2.0-rc or higher is "
"required when you want to enable addto strategy.")
compiled_program = fluid.CompiledProgram(program).with_data_parallel(
share_vars_from=share_prog,
......@@ -473,7 +481,9 @@ def run(dataloader,
m.reset()
batch_time = AverageMeter('elapse', '.3f')
tic = time.time()
for idx, batch in enumerate(dataloader()):
dataloader = dataloader if config.get('use_dali') else dataloader()()
for idx, batch in enumerate(dataloader):
metrics = exe.run(program=program, feed=batch, fetch_list=fetch_list)
batch_time.update(time.time() - tic)
tic = time.time()
......@@ -508,7 +518,9 @@ def run(dataloader,
if idx == 0 else epoch_str,
logger.coloring(step_str, "PURPLE"),
logger.coloring(fetchs_str, 'OKGREEN')))
if config.get('use_dali'):
dataloader.reset()
end_str = ''.join([str(m.mean) + ' '
for m in metric_list] + [batch_time.total]) + 's'
......
#!/usr/bin/env bash
python3.7 -m paddle.distributed.launch \
--selected_gpus="0,1,2,3" \
tools/train.py \
-c configs/ResNet/ResNet50.yaml \
-o TRAIN.batch_size=256 \
-o use_dali=True
......@@ -108,14 +108,21 @@ def main(args):
# load model from 1. checkpoint to resume training, 2. pretrained model to finetune
init_model(config, train_prog, exe)
if not config.get('use_dali', False):
train_reader = Reader(config, 'train')()
train_dataloader.set_sample_list_generator(train_reader, place)
if config.validate:
valid_reader = Reader(config, 'valid')()
valid_dataloader.set_sample_list_generator(valid_reader, place)
compiled_valid_prog = program.compile(config, valid_prog)
train_reader = Reader(config, 'train')()
train_dataloader.set_sample_list_generator(train_reader, place)
if config.validate:
valid_reader = Reader(config, 'valid')()
valid_dataloader.set_sample_list_generator(valid_reader, place)
compiled_valid_prog = program.compile(config, valid_prog)
else:
import dali
train_dataloader = dali.train(config)
if config.validate and int(os.getenv("PADDLE_TRAINER_ID", 0)):
if int(os.getenv("PADDLE_TRAINER_ID", 0)) == 0:
valid_dataloader = dali.val(config)
compiled_valid_prog = program.compile(config, valid_prog)
compiled_train_prog = fleet.main_program
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册