提交 b857342a 编写于 作者: littletomatodonkey's avatar littletomatodonkey

remove unused import

上级 34edfa05
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. import numpy as np
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
__all__ = [ __all__ = [
"DenseNet", "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201", "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201", "DenseNet264"
"DenseNet264"
] ]
class DenseNet(): class BNACConvLayer(fluid.dygraph.Layer):
def __init__(self, layers=121): def __init__(self,
self.layers = layers num_channels,
num_filters,
filter_size,
stride=1,
pad=0,
groups=1,
act="relu",
name=None):
super(BNACConvLayer, self).__init__()
self._batch_norm = BatchNorm(
num_channels,
act=act,
param_attr=ParamAttr(name=name + '_bn_scale'),
bias_attr=ParamAttr(name + '_bn_offset'),
moving_mean_name=name + '_bn_mean',
moving_variance_name=name + '_bn_variance')
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=pad,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
def forward(self, input):
y = self._batch_norm(input)
y = self._conv(y)
return y
class DenseLayer(fluid.dygraph.Layer):
def __init__(self, num_channels, growth_rate, bn_size, dropout, name=None):
super(DenseLayer, self).__init__()
self.dropout = dropout
self.bn_ac_func1 = BNACConvLayer(
num_channels=num_channels,
num_filters=bn_size * growth_rate,
filter_size=1,
pad=0,
stride=1,
name=name + "_x1")
self.bn_ac_func2 = BNACConvLayer(
num_channels=bn_size * growth_rate,
num_filters=growth_rate,
filter_size=3,
pad=1,
stride=1,
name=name + "_x2")
if dropout:
self.dropout_func = Dropout(p=dropout)
def forward(self, input):
conv = self.bn_ac_func1(input)
conv = self.bn_ac_func2(conv)
if self.dropout:
conv = self.dropout_func(conv)
conv = fluid.layers.concat([input, conv], axis=1)
return conv
class DenseBlock(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_layers,
bn_size,
growth_rate,
dropout,
name=None):
super(DenseBlock, self).__init__()
self.dropout = dropout
self.dense_layer_func = []
pre_channel = num_channels
for layer in range(num_layers):
self.dense_layer_func.append(
self.add_sublayer(
"{}_{}".format(name, layer + 1),
DenseLayer(
num_channels=pre_channel,
growth_rate=growth_rate,
bn_size=bn_size,
dropout=dropout,
name=name + '_' + str(layer + 1))))
pre_channel = pre_channel + growth_rate
def forward(self, input):
conv = input
for func in self.dense_layer_func:
conv = func(conv)
return conv
class TransitionLayer(fluid.dygraph.Layer):
def __init__(self, num_channels, num_output_features, name=None):
super(TransitionLayer, self).__init__()
self.conv_ac_func = BNACConvLayer(
num_channels=num_channels,
num_filters=num_output_features,
filter_size=1,
pad=0,
stride=1,
name=name)
self.pool2d_avg = Pool2D(pool_size=2, pool_stride=2, pool_type='avg')
def forward(self, input):
y = self.conv_ac_func(input)
y = self.pool2d_avg(y)
return y
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
pad=0,
groups=1,
act="relu",
name=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=pad,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name=name + '_bn_scale'),
bias_attr=ParamAttr(name + '_bn_offset'),
moving_mean_name=name + '_bn_mean',
moving_variance_name=name + '_bn_variance')
def forward(self, input):
y = self._conv(input)
y = self._batch_norm(y)
return y
class DenseNet(fluid.dygraph.Layer):
def __init__(self, layers=60, bn_size=4, dropout=0, class_dim=1000):
super(DenseNet, self).__init__()
def net(self, input, bn_size=4, dropout=0, class_dim=1000):
layers = self.layers
supported_layers = [121, 161, 169, 201, 264] supported_layers = [121, 161, 169, 201, 264]
assert layers in supported_layers, \ assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers) "supported layers are {} but input layer is {}".format(
supported_layers, layers)
densenet_spec = { densenet_spec = {
121: (64, 32, [6, 12, 24, 16]), 121: (64, 32, [6, 12, 24, 16]),
161: (96, 48, [6, 12, 36, 24]), 161: (96, 48, [6, 12, 36, 24]),
...@@ -44,139 +186,86 @@ class DenseNet(): ...@@ -44,139 +186,86 @@ class DenseNet():
201: (64, 32, [6, 12, 48, 32]), 201: (64, 32, [6, 12, 48, 32]),
264: (64, 32, [6, 12, 64, 48]) 264: (64, 32, [6, 12, 64, 48])
} }
num_init_features, growth_rate, block_config = densenet_spec[layers] num_init_features, growth_rate, block_config = densenet_spec[layers]
conv = fluid.layers.conv2d(
input=input, self.conv1_func = ConvBNLayer(
num_channels=3,
num_filters=num_init_features, num_filters=num_init_features,
filter_size=7, filter_size=7,
stride=2, stride=2,
padding=3, pad=3,
act=None,
param_attr=ParamAttr(name="conv1_weights"),
bias_attr=False)
conv = fluid.layers.batch_norm(
input=conv,
act='relu', act='relu',
param_attr=ParamAttr(name='conv1_bn_scale'), name="conv1")
bias_attr=ParamAttr(name='conv1_bn_offset'),
moving_mean_name='conv1_bn_mean', self.pool2d_max = Pool2D(
moving_variance_name='conv1_bn_variance') pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
conv = fluid.layers.pool2d(
input=conv, self.block_config = block_config
pool_size=3,
pool_stride=2, self.dense_block_func_list = []
pool_padding=1, self.transition_func_list = []
pool_type='max') pre_num_channels = num_init_features
num_features = num_init_features num_features = num_init_features
for i, num_layers in enumerate(block_config): for i, num_layers in enumerate(block_config):
conv = self.make_dense_block( self.dense_block_func_list.append(
conv, self.add_sublayer(
num_layers, "db_conv_{}".format(i + 2),
bn_size, DenseBlock(
growth_rate, num_channels=pre_num_channels,
dropout, num_layers=num_layers,
name='conv' + str(i + 2)) bn_size=bn_size,
growth_rate=growth_rate,
dropout=dropout,
name='conv' + str(i + 2))))
num_features = num_features + num_layers * growth_rate num_features = num_features + num_layers * growth_rate
pre_num_channels = num_features
if i != len(block_config) - 1: if i != len(block_config) - 1:
conv = self.make_transition( self.transition_func_list.append(
conv, num_features // 2, name='conv' + str(i + 2) + '_blk') self.add_sublayer(
"tr_conv{}_blk".format(i + 2),
TransitionLayer(
num_channels=pre_num_channels,
num_output_features=num_features // 2,
name='conv' + str(i + 2) + "_blk")))
pre_num_channels = num_features // 2
num_features = num_features // 2 num_features = num_features // 2
conv = fluid.layers.batch_norm(
input=conv, self.batch_norm = BatchNorm(
act='relu', num_features,
act="relu",
param_attr=ParamAttr(name='conv5_blk_bn_scale'), param_attr=ParamAttr(name='conv5_blk_bn_scale'),
bias_attr=ParamAttr(name='conv5_blk_bn_offset'), bias_attr=ParamAttr(name='conv5_blk_bn_offset'),
moving_mean_name='conv5_blk_bn_mean', moving_mean_name='conv5_blk_bn_mean',
moving_variance_name='conv5_blk_bn_variance') moving_variance_name='conv5_blk_bn_variance')
conv = fluid.layers.pool2d(
input=conv, pool_type='avg', global_pooling=True) self.pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(conv.shape[1] * 1.0)
out = fluid.layers.fc( stdv = 1.0 / math.sqrt(num_features * 1.0)
input=conv,
size=class_dim, self.out = Linear(
param_attr=fluid.param_attr.ParamAttr( num_features,
class_dim,
param_attr=ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv), initializer=fluid.initializer.Uniform(-stdv, stdv),
name="fc_weights"), name="fc_weights"),
bias_attr=ParamAttr(name='fc_offset')) bias_attr=ParamAttr(name="fc_offset"))
return out
def make_transition(self, input, num_output_features, name=None): def forward(self, input):
bn_ac = fluid.layers.batch_norm( conv = self.conv1_func(input)
input, conv = self.pool2d_max(conv)
act='relu',
param_attr=ParamAttr(name=name + '_bn_scale'),
bias_attr=ParamAttr(name + '_bn_offset'),
moving_mean_name=name + '_bn_mean',
moving_variance_name=name + '_bn_variance')
bn_ac_conv = fluid.layers.conv2d( for i, num_layers in enumerate(self.block_config):
input=bn_ac, conv = self.dense_block_func_list[i](conv)
num_filters=num_output_features, if i != len(self.block_config) - 1:
filter_size=1, conv = self.transition_func_list[i](conv)
stride=1,
act=None,
bias_attr=False,
param_attr=ParamAttr(name=name + "_weights"))
pool = fluid.layers.pool2d(
input=bn_ac_conv, pool_size=2, pool_stride=2, pool_type='avg')
return pool
def make_dense_block(self,
input,
num_layers,
bn_size,
growth_rate,
dropout,
name=None):
conv = input
for layer in range(num_layers):
conv = self.make_dense_layer(
conv,
growth_rate,
bn_size,
dropout,
name=name + '_' + str(layer + 1))
return conv
def make_dense_layer(self, input, growth_rate, bn_size, dropout, conv = self.batch_norm(conv)
name=None): y = self.pool2d_avg(conv)
bn_ac = fluid.layers.batch_norm( y = fluid.layers.reshape(y, shape=[0, -1])
input, y = self.out(y)
act='relu', return y
param_attr=ParamAttr(name=name + '_x1_bn_scale'),
bias_attr=ParamAttr(name + '_x1_bn_offset'),
moving_mean_name=name + '_x1_bn_mean',
moving_variance_name=name + '_x1_bn_variance')
bn_ac_conv = fluid.layers.conv2d(
input=bn_ac,
num_filters=bn_size * growth_rate,
filter_size=1,
stride=1,
act=None,
bias_attr=False,
param_attr=ParamAttr(name=name + "_x1_weights"))
bn_ac = fluid.layers.batch_norm(
bn_ac_conv,
act='relu',
param_attr=ParamAttr(name=name + '_x2_bn_scale'),
bias_attr=ParamAttr(name + '_x2_bn_offset'),
moving_mean_name=name + '_x2_bn_mean',
moving_variance_name=name + '_x2_bn_variance')
bn_ac_conv = fluid.layers.conv2d(
input=bn_ac,
num_filters=growth_rate,
filter_size=3,
stride=1,
padding=1,
act=None,
bias_attr=False,
param_attr=ParamAttr(name=name + "_x2_weights"))
if dropout:
bn_ac_conv = fluid.layers.dropout(
x=bn_ac_conv, dropout_prob=dropout)
bn_ac_conv = fluid.layers.concat([input, bn_ac_conv], axis=1)
return bn_ac_conv
def DenseNet121(): def DenseNet121():
......
import numpy as np import numpy as np
import argparse import sys
import ast
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid import framework
import math import math
import sys
import time
__all__ = [ __all__ = [
"DPN", "DPN",
......
import numpy as np import numpy as np
import argparse
import ast
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid import framework
import math import math
import sys
import time
__all__ = [ __all__ = [
"HRNet_W18_C", "HRNet_W18_C",
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册