提交 b6e9b7dc 编写于 作者: D dongshuilong

fix slim docs

上级 70a1fb9d
......@@ -61,7 +61,9 @@ cd PaddleClas
训练指令如下:
* CPU
* CPU/单卡GPU
以CPU为例,若使用GPU,则将命令中改成`cpu`改成`gpu`
```bash
python3.7 deploy/slim/slim.py -m train -c ppcls/configs/slim/ResNet50_vd_quantalization.yaml -o Global.device=cpu
......@@ -71,7 +73,7 @@ python3.7 deploy/slim/slim.py -m train -c ppcls/configs/slim/ResNet50_vd_quantal
`-m`:表示`slim.py`支持的模式,有`train、eval、infer、export`,4种模式,分别为:训练、测试、动态图预测、导出`inference model`
* 单机单卡/单机多卡/多机多卡启动
* 单机多卡/多机多卡启动
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3
......@@ -102,7 +104,9 @@ python3.7 deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/ResNet/ResN
训练指令如下:
- CPU
- CPU/单卡GPU
以CPU为例,若使用GPU,则将命令中改成`cpu`改成`gpu`
```bash
python3.7 deploy/slim/slim.py -m train -c ppcls/configs/slim/ResNet50_vd_prune.yaml -o Global.device=cpu
......
......@@ -62,7 +62,9 @@ After the quantization strategy is defined, the model can be quantified.
The training command is as follow:
* CPU
* CPU/Single GPU
If using GPU, change the `cpu` to `gpu` in the following command.
```bash
python3.7 deploy/slim/slim.py -m train -c ppcls/configs/slim/ResNet50_vd_quantalization.yaml -o Global.device=cpu
......@@ -101,7 +103,9 @@ If run successfully, the directory `quant_post_static_model` is generated in `Gl
#### 3.2 Model Pruning
- CPU
- CPU/Single GPU
If using GPU, change the `cpu` to `gpu` in the following command.
```bash
python3.7 deploy/slim/slim.py -m train -c ppcls/configs/slim/ResNet50_vd_prune.yaml -o Global.device=cpu
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册