提交 b23e72b1 编写于 作者: W weishengyu

add combined_metrics

上级 4afca16d
......@@ -31,7 +31,7 @@ from ppcls.utils import logger
from ppcls.data import build_dataloader
from ppcls.arch import build_model
from ppcls.loss import build_loss
from ppcls.arch.loss_metrics import build_metrics
from ppcls.metric import build_metrics
from ppcls.optimizer import build_optimizer
from ppcls.utils.save_load import load_dygraph_pretrain
from ppcls.utils.save_load import init_model
......@@ -379,6 +379,11 @@ class Trainer(object):
query_img_id, gallery_img_id)
else:
metric_dict = {metric_key: 0.}
metric_msg = ", ".join([
"{}: {:.5f}".format(key, metric_dict[key].avg)
for key in metric_dict
])
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
return metric_dict[metric_key]
......
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from paddle import nn
import copy
from collections import OrderedDict
from .metrics import Topk, mAP, mINP, Recallk
class CombinedMetrics(nn.Layer):
def __init__(self, config_list):
super().__init__()
self.metric_func_list = []
assert isinstance(config_list, list), (
'operator config should be a list')
for config in config_list:
print(config)
assert isinstance(config,
dict) and len(config) == 1, "yaml format error"
metric_name = list(config)[0]
metric_params = config[metric_name]
self.metric_func_list.append(eval(metric_name)(**metric_params))
def __call__(self,
similarities_matrix,
query_img_id,
gallery_img_id,
x=None,
label=None):
metric_dict = OrderedDict()
for idx, metric_func in enumerate(self.metric_func_list):
if x is None:
metric_dict.update(metric_func(x, label))
else:
metric_dict.update(
metric_func(similarities_matrix, query_img_id,
gallery_img_id))
return metric_dict
def build_metrics(config):
metrics_list = CombinedMetrics(copy.deepcopy(config))
return metrics_list
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册