Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
b1f0d6d0
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b1f0d6d0
编写于
7月 14, 2022
作者:
C
cuicheng01
提交者:
GitHub
7月 14, 2022
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1908 from flytocc/PeleeNet_PR
add PeleeNet
上级
c5b5b343
1fccb35b
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
425 addition
and
0 deletion
+425
-0
ppcls/arch/backbone/__init__.py
ppcls/arch/backbone/__init__.py
+2
-0
ppcls/arch/backbone/model_zoo/peleenet.py
ppcls/arch/backbone/model_zoo/peleenet.py
+239
-0
ppcls/configs/ImageNet/PeleeNet/PeleeNet.yaml
ppcls/configs/ImageNet/PeleeNet/PeleeNet.yaml
+130
-0
test_tipc/config/PeleeNet/PeleeNet_train_infer_python.txt
test_tipc/config/PeleeNet/PeleeNet_train_infer_python.txt
+54
-0
未找到文件。
ppcls/arch/backbone/__init__.py
浏览文件 @
b1f0d6d0
...
...
@@ -67,7 +67,9 @@ from ppcls.arch.backbone.model_zoo.pvt_v2 import PVT_V2_B0, PVT_V2_B1, PVT_V2_B2
from
ppcls.arch.backbone.model_zoo.mobilevit
import
MobileViT_XXS
,
MobileViT_XS
,
MobileViT_S
from
ppcls.arch.backbone.model_zoo.repvgg
import
RepVGG_A0
,
RepVGG_A1
,
RepVGG_A2
,
RepVGG_B0
,
RepVGG_B1
,
RepVGG_B2
,
RepVGG_B1g2
,
RepVGG_B1g4
,
RepVGG_B2g4
,
RepVGG_B3g4
from
ppcls.arch.backbone.model_zoo.van
import
VAN_tiny
from
ppcls.arch.backbone.model_zoo.peleenet
import
PeleeNet
from
ppcls.arch.backbone.model_zoo.convnext
import
ConvNeXt_tiny
from
ppcls.arch.backbone.variant_models.resnet_variant
import
ResNet50_last_stage_stride1
from
ppcls.arch.backbone.variant_models.vgg_variant
import
VGG19Sigmoid
from
ppcls.arch.backbone.variant_models.pp_lcnet_variant
import
PPLCNet_x2_5_Tanh
...
...
ppcls/arch/backbone/model_zoo/peleenet.py
0 → 100644
浏览文件 @
b1f0d6d0
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# MIT License
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Code was heavily based on https://github.com/Robert-JunWang/PeleeNet
# reference: https://arxiv.org/pdf/1804.06882.pdf
import
math
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.nn.initializer
import
Normal
,
Constant
from
ppcls.utils.save_load
import
load_dygraph_pretrain
,
load_dygraph_pretrain_from_url
MODEL_URLS
=
{
"peleenet"
:
""
# TODO
}
__all__
=
MODEL_URLS
.
keys
()
normal_
=
lambda
x
,
mean
=
0
,
std
=
1
:
Normal
(
mean
,
std
)(
x
)
constant_
=
lambda
x
,
value
=
0
:
Constant
(
value
)(
x
)
zeros_
=
Constant
(
value
=
0.
)
ones_
=
Constant
(
value
=
1.
)
class
_DenseLayer
(
nn
.
Layer
):
def
__init__
(
self
,
num_input_features
,
growth_rate
,
bottleneck_width
,
drop_rate
):
super
(
_DenseLayer
,
self
).
__init__
()
growth_rate
=
int
(
growth_rate
/
2
)
inter_channel
=
int
(
growth_rate
*
bottleneck_width
/
4
)
*
4
if
inter_channel
>
num_input_features
/
2
:
inter_channel
=
int
(
num_input_features
/
8
)
*
4
print
(
'adjust inter_channel to '
,
inter_channel
)
self
.
branch1a
=
BasicConv2D
(
num_input_features
,
inter_channel
,
kernel_size
=
1
)
self
.
branch1b
=
BasicConv2D
(
inter_channel
,
growth_rate
,
kernel_size
=
3
,
padding
=
1
)
self
.
branch2a
=
BasicConv2D
(
num_input_features
,
inter_channel
,
kernel_size
=
1
)
self
.
branch2b
=
BasicConv2D
(
inter_channel
,
growth_rate
,
kernel_size
=
3
,
padding
=
1
)
self
.
branch2c
=
BasicConv2D
(
growth_rate
,
growth_rate
,
kernel_size
=
3
,
padding
=
1
)
def
forward
(
self
,
x
):
branch1
=
self
.
branch1a
(
x
)
branch1
=
self
.
branch1b
(
branch1
)
branch2
=
self
.
branch2a
(
x
)
branch2
=
self
.
branch2b
(
branch2
)
branch2
=
self
.
branch2c
(
branch2
)
return
paddle
.
concat
([
x
,
branch1
,
branch2
],
1
)
class
_DenseBlock
(
nn
.
Sequential
):
def
__init__
(
self
,
num_layers
,
num_input_features
,
bn_size
,
growth_rate
,
drop_rate
):
super
(
_DenseBlock
,
self
).
__init__
()
for
i
in
range
(
num_layers
):
layer
=
_DenseLayer
(
num_input_features
+
i
*
growth_rate
,
growth_rate
,
bn_size
,
drop_rate
)
setattr
(
self
,
'denselayer%d'
%
(
i
+
1
),
layer
)
class
_StemBlock
(
nn
.
Layer
):
def
__init__
(
self
,
num_input_channels
,
num_init_features
):
super
(
_StemBlock
,
self
).
__init__
()
num_stem_features
=
int
(
num_init_features
/
2
)
self
.
stem1
=
BasicConv2D
(
num_input_channels
,
num_init_features
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
stem2a
=
BasicConv2D
(
num_init_features
,
num_stem_features
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
stem2b
=
BasicConv2D
(
num_stem_features
,
num_init_features
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
stem3
=
BasicConv2D
(
2
*
num_init_features
,
num_init_features
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
pool
=
nn
.
MaxPool2D
(
kernel_size
=
2
,
stride
=
2
)
def
forward
(
self
,
x
):
out
=
self
.
stem1
(
x
)
branch2
=
self
.
stem2a
(
out
)
branch2
=
self
.
stem2b
(
branch2
)
branch1
=
self
.
pool
(
out
)
out
=
paddle
.
concat
([
branch1
,
branch2
],
1
)
out
=
self
.
stem3
(
out
)
return
out
class
BasicConv2D
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
activation
=
True
,
**
kwargs
):
super
(
BasicConv2D
,
self
).
__init__
()
self
.
conv
=
nn
.
Conv2D
(
in_channels
,
out_channels
,
bias_attr
=
False
,
**
kwargs
)
self
.
norm
=
nn
.
BatchNorm2D
(
out_channels
)
self
.
activation
=
activation
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
x
=
self
.
norm
(
x
)
if
self
.
activation
:
return
F
.
relu
(
x
)
else
:
return
x
class
PeleeNetDY
(
nn
.
Layer
):
r
"""PeleeNet model class, based on
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf> and
"Pelee: A Real-Time Object Detection System on Mobile Devices" <https://arxiv.org/pdf/1804.06882.pdf>`
Args:
growth_rate (int or list of 4 ints) - how many filters to add each layer (`k` in paper)
block_config (list of 4 ints) - how many layers in each pooling block
num_init_features (int) - the number of filters to learn in the first convolution layer
bottleneck_width (int or list of 4 ints) - multiplicative factor for number of bottle neck layers
(i.e. bn_size * k features in the bottleneck layer)
drop_rate (float) - dropout rate after each dense layer
class_num (int) - number of classification classes
"""
def
__init__
(
self
,
growth_rate
=
32
,
block_config
=
[
3
,
4
,
8
,
6
],
num_init_features
=
32
,
bottleneck_width
=
[
1
,
2
,
4
,
4
],
drop_rate
=
0.05
,
class_num
=
1000
):
super
(
PeleeNetDY
,
self
).
__init__
()
self
.
features
=
nn
.
Sequential
(
*
[
(
'stemblock'
,
_StemBlock
(
3
,
num_init_features
)),
])
if
type
(
growth_rate
)
is
list
:
growth_rates
=
growth_rate
assert
len
(
growth_rates
)
==
4
,
\
'The growth rate must be the list and the size must be 4'
else
:
growth_rates
=
[
growth_rate
]
*
4
if
type
(
bottleneck_width
)
is
list
:
bottleneck_widths
=
bottleneck_width
assert
len
(
bottleneck_widths
)
==
4
,
\
'The bottleneck width must be the list and the size must be 4'
else
:
bottleneck_widths
=
[
bottleneck_width
]
*
4
# Each denseblock
num_features
=
num_init_features
for
i
,
num_layers
in
enumerate
(
block_config
):
block
=
_DenseBlock
(
num_layers
=
num_layers
,
num_input_features
=
num_features
,
bn_size
=
bottleneck_widths
[
i
],
growth_rate
=
growth_rates
[
i
],
drop_rate
=
drop_rate
)
setattr
(
self
.
features
,
'denseblock%d'
%
(
i
+
1
),
block
)
num_features
=
num_features
+
num_layers
*
growth_rates
[
i
]
setattr
(
self
.
features
,
'transition%d'
%
(
i
+
1
),
BasicConv2D
(
num_features
,
num_features
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
))
if
i
!=
len
(
block_config
)
-
1
:
setattr
(
self
.
features
,
'transition%d_pool'
%
(
i
+
1
),
nn
.
AvgPool2D
(
kernel_size
=
2
,
stride
=
2
))
num_features
=
num_features
# Linear layer
self
.
classifier
=
nn
.
Linear
(
num_features
,
class_num
)
self
.
drop_rate
=
drop_rate
self
.
apply
(
self
.
_initialize_weights
)
def
forward
(
self
,
x
):
features
=
self
.
features
(
x
)
out
=
F
.
avg_pool2d
(
features
,
kernel_size
=
features
.
shape
[
2
:
4
]).
flatten
(
1
)
if
self
.
drop_rate
>
0
:
out
=
F
.
dropout
(
out
,
p
=
self
.
drop_rate
,
training
=
self
.
training
)
out
=
self
.
classifier
(
out
)
return
out
def
_initialize_weights
(
self
,
m
):
if
isinstance
(
m
,
nn
.
Conv2D
):
n
=
m
.
_kernel_size
[
0
]
*
m
.
_kernel_size
[
1
]
*
m
.
_out_channels
normal_
(
m
.
weight
,
std
=
math
.
sqrt
(
2.
/
n
))
if
m
.
bias
is
not
None
:
zeros_
(
m
.
bias
)
elif
isinstance
(
m
,
nn
.
BatchNorm2D
):
ones_
(
m
.
weight
)
zeros_
(
m
.
bias
)
elif
isinstance
(
m
,
nn
.
Linear
):
normal_
(
m
.
weight
,
std
=
0.01
)
zeros_
(
m
.
bias
)
def
_load_pretrained
(
pretrained
,
model
,
model_url
,
use_ssld
):
if
pretrained
is
False
:
pass
elif
pretrained
is
True
:
load_dygraph_pretrain_from_url
(
model
,
model_url
,
use_ssld
=
use_ssld
)
elif
isinstance
(
pretrained
,
str
):
load_dygraph_pretrain
(
model
,
pretrained
)
else
:
raise
RuntimeError
(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def
PeleeNet
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
PeleeNetDY
(
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"peleenet"
],
use_ssld
)
return
model
ppcls/configs/ImageNet/PeleeNet/PeleeNet.yaml
0 → 100644
浏览文件 @
b1f0d6d0
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
epochs
:
120
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
224
,
224
]
save_inference_dir
:
./inference
# training model under @to_static
to_static
:
False
# model architecture
Arch
:
name
:
PeleeNet
class_num
:
1000
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.18
# for total batch size 512
regularizer
:
name
:
'
L2'
coeff
:
0.0001
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
RandCropImage
:
size
:
224
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
128
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
256
# for 2 cards
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/inference_deployment/whl_demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Train
:
-
TopkAcc
:
topk
:
[
1
,
5
]
Eval
:
-
TopkAcc
:
topk
:
[
1
,
5
]
test_tipc/config/PeleeNet/PeleeNet_train_infer_python.txt
0 → 100644
浏览文件 @
b1f0d6d0
===========================train_params===========================
model_name:PeleeNet
python:python3
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PeleeNet/PeleeNet.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/PeleeNet/PeleeNet.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/PeleeNet/PeleeNet.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
inference_dir:null
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录