Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
ae2cbc31
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ae2cbc31
编写于
10月 21, 2020
作者:
G
gaotingquan
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'upstream/dygraph' into dygraph
Update repo
上级
17c66f42
7592654c
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
26 addition
and
45 deletion
+26
-45
README.md
README.md
+1
-3
README_cn.md
README_cn.md
+1
-2
configs/EfficientNet/EfficientNetB0.yaml
configs/EfficientNet/EfficientNetB0.yaml
+0
-1
docs/en/models/SEResNext_and_Res2Net_en.md
docs/en/models/SEResNext_and_Res2Net_en.md
+2
-0
docs/en/update_history_en.md
docs/en/update_history_en.md
+4
-0
docs/zh_CN/models/SEResNext_and_Res2Net.md
docs/zh_CN/models/SEResNext_and_Res2Net.md
+2
-0
docs/zh_CN/update_history.md
docs/zh_CN/update_history.md
+3
-0
ppcls/modeling/architectures/efficientnet.py
ppcls/modeling/architectures/efficientnet.py
+12
-36
ppcls/modeling/architectures/res2net_vd.py
ppcls/modeling/architectures/res2net_vd.py
+1
-3
未找到文件。
README.md
浏览文件 @
ae2cbc31
...
...
@@ -6,15 +6,13 @@
PaddleClas is a toolset for image classification tasks prepared for the industry and academia. It helps users train better computer vision models and apply them in real scenarios.
**Recent update**
-
2020.09.17 Add
`Res2Net50_vd_26w_4s_ssld`
pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 83.1%. Add
`Res2Net101_vd_26w_4s_ssld`
pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 83.9%.
-
2020.10.12 Add Paddle-Lite demo。
-
2020.10.10 Add cpp inference demo and improve FAQ tutorial.
-
2020.09.17 Add
`HRNet_W48_C_ssld`
pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 83.62%. Add
`ResNet34_vd_ssld`
pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 79.72%.
-
2020.09.07 Add
`HRNet_W18_C_ssld`
pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 81.16%.
-
2020.07.14 Add
`Res2Net200_vd_26w_4s_ssld`
pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 85.13%. Add
`Fix_ResNet50_vd_ssld_v2`
pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 84.00%.
-
2020.06.17 Add English documents.
-
2020.06.12 Add support for training and evaluation on Windows or CPU.
-
[
more
](
./docs/en/update_history_en.md
)
...
...
README_cn.md
浏览文件 @
ae2cbc31
...
...
@@ -7,13 +7,12 @@
飞桨图像分类套件PaddleClas是飞桨为工业界和学术界所准备的一个图像分类任务的工具集,助力使用者训练出更好的视觉模型和应用落地。
**近期更新**
-
2020.10.20 添加
`Res2Net50_vd_26w_4s_ssld `
模型,在ImageNet-1k上Top-1 Acc可达83.1%;添加
`Res2Net101_vd_26w_4s_ssld `
模型,在ImageNet-1k上Top-1 Acc可达83.9%。
-
2020.10.12 添加Paddle-Lite demo。
-
2020.10.10 添加cpp inference demo,完善
`FAQ 30问`
教程。
-
2020.09.17 添加
`HRNet_W48_C_ssld `
模型,在ImageNet-1k上Top-1 Acc可达83.62%;添加
`ResNet34_vd_ssld `
模型,在ImageNet-1k上Top-1 Acc可达79.72%。
-
2020.09.07 添加
`HRNet_W18_C_ssld `
模型,在ImageNet-1k上Top-1 Acc可达81.16%;添加
`MobileNetV3_small_x0_35_ssld `
模型,在ImageNet-1k上Top-1 Acc可达55.55%。
-
2020.07.14 添加
`Res2Net200_vd_26w_4s_ssld `
模型,在ImageNet-1k上Top-1 Acc可达85.13%;添加
`Fix_ResNet50_vd_ssld_v2 `
模型,在ImageNet-1k上Top-1 Acc可达84.0%。
-
2020.06.17 添加英文文档。
-
2020.06.12 添加对windows和CPU环境的训练与评估支持。
-
[
more
](
./docs/zh_CN/update_history.md
)
...
...
configs/EfficientNet/EfficientNetB0.yaml
浏览文件 @
ae2cbc31
...
...
@@ -2,7 +2,6 @@ mode: 'train'
ARCHITECTURE
:
name
:
"
EfficientNetB0"
params
:
is_test
:
False
padding_type
:
"
SAME"
override_params
:
drop_connect_rate
:
0.1
...
...
docs/en/models/SEResNext_and_Res2Net_en.md
浏览文件 @
ae2cbc31
...
...
@@ -30,8 +30,10 @@ At present, there are a total of 24 pretrained models of the three categories op
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| Res2Net50_26w_4s | 0.793 | 0.946 | 0.780 | 0.936 | 8.520 | 25.700 |
| Res2Net50_vd_26w_4s | 0.798 | 0.949 | | | 8.370 | 25.060 |
| Res2Net50_vd_26w_4s_ssld | 0.831 | 0.966 | | | 8.370 | 25.060 |
| Res2Net50_14w_8s | 0.795 | 0.947 | 0.781 | 0.939 | 9.010 | 25.720 |
| Res2Net101_vd_26w_4s | 0.806 | 0.952 | | | 16.670 | 45.220 |
| Res2Net101_vd_26w_4s_ssld | 0.839 | 0.971 | | | 16.670 | 45.220 |
| Res2Net200_vd_26w_4s | 0.812 | 0.957 | | | 31.490 | 76.210 |
| Res2Net200_vd_26w_4s_ssld |
**0.851**
| 0.974 | | | 31.490 | 76.210 |
| ResNeXt50_32x4d | 0.778 | 0.938 | 0.778 | | 8.020 | 23.640 |
...
...
docs/en/update_history_en.md
浏览文件 @
ae2cbc31
# Release Notes
*
2020.10.20
*
Add
`Res2Net50_vd_26w_4s_ssld`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 83.1%.
*
Add
`Res2Net101_vd_26w_4s_ssld`
pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 83.9%.
-
2020.10.12
*
Add Paddle-Lite demo.
...
...
docs/zh_CN/models/SEResNext_and_Res2Net.md
浏览文件 @
ae2cbc31
...
...
@@ -29,8 +29,10 @@ Res2Net是2019年提出的一种全新的对ResNet的改进方案,该方案可
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| Res2Net50_26w_4s | 0.793 | 0.946 | 0.780 | 0.936 | 8.520 | 25.700 |
| Res2Net50_vd_26w_4s | 0.798 | 0.949 | | | 8.370 | 25.060 |
| Res2Net50_vd_26w_4s_ssld | 0.831 | 0.966 | | | 8.370 | 25.060 |
| Res2Net50_14w_8s | 0.795 | 0.947 | 0.781 | 0.939 | 9.010 | 25.720 |
| Res2Net101_vd_26w_4s | 0.806 | 0.952 | | | 16.670 | 45.220 |
| Res2Net101_vd_26w_4s_ssld | 0.839 | 0.971 | | | 16.670 | 45.220 |
| Res2Net200_vd_26w_4s | 0.812 | 0.957 | | | 31.490 | 76.210 |
| Res2Net200_vd_26w_4s_ssld |
**0.851**
| 0.974 | | | 31.490 | 76.210 |
| ResNeXt50_32x4d | 0.778 | 0.938 | 0.778 | | 8.020 | 23.640 |
...
...
docs/zh_CN/update_history.md
浏览文件 @
ae2cbc31
# 更新日志
-
2020.10.20
*
添加Res2Net50_vd_26w_4s_ssld模型,在ImageNet上Top-1 Acc可达0.831;添加Res2Net101_vd_26w_4s_ssld模型,在ImageNet上Top-1 Acc可达0.839。
-
2020.10.12
*
添加Paddle-Lite demo。
...
...
ppcls/modeling/architectures/efficientnet.py
浏览文件 @
ae2cbc31
...
...
@@ -518,7 +518,6 @@ class MbConvBlock(nn.Layer):
use_se
,
name
=
None
,
drop_connect_rate
=
None
,
is_test
=
False
,
model_name
=
None
,
cur_stage
=
None
):
super
(
MbConvBlock
,
self
).
__init__
()
...
...
@@ -530,7 +529,6 @@ class MbConvBlock(nn.Layer):
self
.
id_skip
=
block_args
.
id_skip
self
.
expand_ratio
=
block_args
.
expand_ratio
self
.
drop_connect_rate
=
drop_connect_rate
self
.
is_test
=
is_test
if
self
.
expand_ratio
!=
1
:
self
.
_ecn
=
ExpandConvNorm
(
...
...
@@ -583,7 +581,7 @@ class MbConvBlock(nn.Layer):
self
.
block_args
.
stride
==
1
and
\
self
.
block_args
.
input_filters
==
self
.
block_args
.
output_filters
:
if
self
.
drop_connect_rate
:
x
=
_drop_connect
(
x
,
self
.
drop_connect_rate
,
self
.
is_test
)
x
=
_drop_connect
(
x
,
self
.
drop_connect_rate
,
not
self
.
training
)
x
=
paddle
.
elementwise_add
(
x
,
inputs
)
return
x
...
...
@@ -623,7 +621,6 @@ class ExtractFeatures(nn.Layer):
_global_params
,
padding_type
,
use_se
,
is_test
,
model_name
=
None
):
super
(
ExtractFeatures
,
self
).
__init__
()
...
...
@@ -661,7 +658,7 @@ class ExtractFeatures(nn.Layer):
num_repeat
=
round_repeats
(
block_args
.
num_repeat
,
_global_params
))
drop_connect_rate
=
self
.
_global_params
.
drop_connect_rate
if
not
is_test
else
0
drop_connect_rate
=
self
.
_global_params
.
drop_connect_rate
if
drop_connect_rate
:
drop_connect_rate
*=
float
(
idx
)
/
block_size
...
...
@@ -682,7 +679,7 @@ class ExtractFeatures(nn.Layer):
block_args
=
block_args
.
_replace
(
input_filters
=
block_args
.
output_filters
,
stride
=
1
)
for
_
in
range
(
block_args
.
num_repeat
-
1
):
drop_connect_rate
=
self
.
_global_params
.
drop_connect_rate
if
not
is_test
else
0
drop_connect_rate
=
self
.
_global_params
.
drop_connect_rate
if
drop_connect_rate
:
drop_connect_rate
*=
float
(
idx
)
/
block_size
_mc_block
=
self
.
add_sublayer
(
...
...
@@ -711,7 +708,6 @@ class ExtractFeatures(nn.Layer):
class
EfficientNet
(
nn
.
Layer
):
def
__init__
(
self
,
name
=
"b0"
,
is_test
=
True
,
padding_type
=
"SAME"
,
override_params
=
None
,
use_se
=
True
,
...
...
@@ -724,7 +720,6 @@ class EfficientNet(nn.Layer):
model_name
,
override_params
)
self
.
padding_type
=
padding_type
self
.
use_se
=
use_se
self
.
is_test
=
is_test
self
.
_ef
=
ExtractFeatures
(
3
,
...
...
@@ -732,7 +727,6 @@ class EfficientNet(nn.Layer):
self
.
_global_params
,
self
.
padding_type
,
self
.
use_se
,
self
.
is_test
,
model_name
=
self
.
name
)
output_channels
=
round_filters
(
1280
,
self
.
_global_params
)
...
...
@@ -785,14 +779,12 @@ class EfficientNet(nn.Layer):
return
x
def
EfficientNetB0_small
(
is_test
=
True
,
padding_type
=
'DYNAMIC'
,
def
EfficientNetB0_small
(
padding_type
=
'DYNAMIC'
,
override_params
=
None
,
use_se
=
False
,
**
args
):
model
=
EfficientNet
(
name
=
'b0'
,
is_test
=
is_test
,
padding_type
=
padding_type
,
override_params
=
override_params
,
use_se
=
use_se
,
...
...
@@ -800,14 +792,12 @@ def EfficientNetB0_small(is_test=True,
return
model
def
EfficientNetB0
(
is_test
=
False
,
padding_type
=
'SAME'
,
def
EfficientNetB0
(
padding_type
=
'SAME'
,
override_params
=
None
,
use_se
=
True
,
**
args
):
model
=
EfficientNet
(
name
=
'b0'
,
is_test
=
is_test
,
padding_type
=
padding_type
,
override_params
=
override_params
,
use_se
=
use_se
,
...
...
@@ -815,14 +805,12 @@ def EfficientNetB0(is_test=False,
return
model
def
EfficientNetB1
(
is_test
=
False
,
padding_type
=
'SAME'
,
def
EfficientNetB1
(
padding_type
=
'SAME'
,
override_params
=
None
,
use_se
=
True
,
**
args
):
model
=
EfficientNet
(
name
=
'b1'
,
is_test
=
is_test
,
padding_type
=
padding_type
,
override_params
=
override_params
,
use_se
=
use_se
,
...
...
@@ -830,14 +818,12 @@ def EfficientNetB1(is_test=False,
return
model
def
EfficientNetB2
(
is_test
=
False
,
padding_type
=
'SAME'
,
def
EfficientNetB2
(
padding_type
=
'SAME'
,
override_params
=
None
,
use_se
=
True
,
**
args
):
model
=
EfficientNet
(
name
=
'b2'
,
is_test
=
is_test
,
padding_type
=
padding_type
,
override_params
=
override_params
,
use_se
=
use_se
,
...
...
@@ -845,14 +831,12 @@ def EfficientNetB2(is_test=False,
return
model
def
EfficientNetB3
(
is_test
=
False
,
padding_type
=
'SAME'
,
def
EfficientNetB3
(
padding_type
=
'SAME'
,
override_params
=
None
,
use_se
=
True
,
**
args
):
model
=
EfficientNet
(
name
=
'b3'
,
is_test
=
is_test
,
padding_type
=
padding_type
,
override_params
=
override_params
,
use_se
=
use_se
,
...
...
@@ -860,14 +844,12 @@ def EfficientNetB3(is_test=False,
return
model
def
EfficientNetB4
(
is_test
=
False
,
padding_type
=
'SAME'
,
def
EfficientNetB4
(
padding_type
=
'SAME'
,
override_params
=
None
,
use_se
=
True
,
**
args
):
model
=
EfficientNet
(
name
=
'b4'
,
is_test
=
is_test
,
padding_type
=
padding_type
,
override_params
=
override_params
,
use_se
=
use_se
,
...
...
@@ -875,14 +857,12 @@ def EfficientNetB4(is_test=False,
return
model
def
EfficientNetB5
(
is_test
=
False
,
padding_type
=
'SAME'
,
def
EfficientNetB5
(
padding_type
=
'SAME'
,
override_params
=
None
,
use_se
=
True
,
**
args
):
model
=
EfficientNet
(
name
=
'b5'
,
is_test
=
is_test
,
padding_type
=
padding_type
,
override_params
=
override_params
,
use_se
=
use_se
,
...
...
@@ -890,14 +870,12 @@ def EfficientNetB5(is_test=False,
return
model
def
EfficientNetB6
(
is_test
=
False
,
padding_type
=
'SAME'
,
def
EfficientNetB6
(
padding_type
=
'SAME'
,
override_params
=
None
,
use_se
=
True
,
**
args
):
model
=
EfficientNet
(
name
=
'b6'
,
is_test
=
is_test
,
padding_type
=
padding_type
,
override_params
=
override_params
,
use_se
=
use_se
,
...
...
@@ -905,14 +883,12 @@ def EfficientNetB6(is_test=False,
return
model
def
EfficientNetB7
(
is_test
=
False
,
padding_type
=
'SAME'
,
def
EfficientNetB7
(
padding_type
=
'SAME'
,
override_params
=
None
,
use_se
=
True
,
**
args
):
model
=
EfficientNet
(
name
=
'b7'
,
is_test
=
is_test
,
padding_type
=
padding_type
,
override_params
=
override_params
,
use_se
=
use_se
,
...
...
ppcls/modeling/architectures/res2net_vd.py
浏览文件 @
ae2cbc31
...
...
@@ -57,7 +57,6 @@ class ConvBNLayer(nn.Layer):
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
...
...
@@ -111,8 +110,7 @@ class BottleneckBlock(nn.Layer):
act
=
'relu'
,
name
=
name
+
'_branch2b_'
+
str
(
s
+
1
)))
self
.
conv1_list
.
append
(
conv1
)
self
.
pool2d_avg
=
AvgPool2d
(
kernel_size
=
3
,
stride
=
stride
,
padding
=
1
,
ceil_mode
=
True
)
self
.
pool2d_avg
=
AvgPool2d
(
kernel_size
=
3
,
stride
=
stride
,
padding
=
1
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录