提交 a13d60c8 编写于 作者: G gaotingquan 提交者: Tingquan Gao

docs: fix invalid link

上级 7b000a5a
简体中文 | [English](../../en/algorithm_introduction/ImageNet_models.md)
<!-- 简体中文 | [English](../../en/algorithm_introduction/ImageNet_models.md) -->
## ImageNet预训练模型库
......
......@@ -51,7 +51,7 @@ PicoDet 由 [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)
更多关于 PicoDet 的优化细节与 benchmark 可以参考 [PicoDet 系列模型介绍](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/picodet/README.md)
在轻量级主体检测任务中,为了更好地兼顾检测速度与效果,我们使用 PPLCNet_x2_5 作为主体检测模型的骨干网络,同时将训练与预测的图像尺度修改为了 640x640,其余配置与 [picodet_m_shufflenetv2_416_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/picodet/picodet_m_shufflenetv2_416_coco.yml)完全一致。将数据集更换为自定义的主体检测数据集,进行训练,最终得到检测模型。
在轻量级主体检测任务中,为了更好地兼顾检测速度与效果,我们使用 PPLCNet_x2_5 作为主体检测模型的骨干网络,同时将训练与预测的图像尺度修改为了 640x640,其余配置与 [picodet_m_shufflenetv2_416_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/picodet/more_config/picodet_lcnet_1_5x_416_coco.yml)完全一致。将数据集更换为自定义的主体检测数据集,进行训练,最终得到检测模型。
### 2.2 服务端主体检测模型
......
......@@ -60,7 +60,7 @@ git checkout develop
```
<!-- TODO(gaotingquan): 需要与lite同学确认,该编译选项是否需要更新:with_cv with_extra, -->
<!-- https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_options.html -->
**注意**:编译Paddle-Lite获得预测库时,需要打开`--with_cv=ON --with_extra=ON`两个选项,`--arch`表示`arm`版本,这里指定为armv8,更多编译命令介绍请参考[链接](https://paddle-lite.readthedocs.io/zh/latest/user_guides/Compile/Android.html#id2)
<!-- **注意**:编译Paddle-Lite获得预测库时,需要打开`--with_cv=ON --with_extra=ON`两个选项,`--arch`表示`arm`版本,这里指定为armv8,更多编译命令介绍请参考[链接](https://paddle-lite.readthedocs.io/zh/latest/user_guides/Compile/Android.html#id2)。 -->
直接下载预测库并解压后,可以得到`inference_lite_lib.android.armv8/`文件夹,通过编译Paddle-Lite得到的预测库位于`Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/`文件夹下。
预测库的文件目录如下:
......
......@@ -54,9 +54,9 @@
- [PPLCNet_x1_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams)
- [PPLCNet_x2_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams)
- [PPLCNet_x2_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams)
- [PPLCNet_x0_5_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5__ssld_pretrained.pdparams)
- [PPLCNet_x0_5_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_ssld_pretrained.pdparams)
- [PPLCNet_x1_0_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_ssld_pretrained.pdparams)
- [PPLCNet_x2_5_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5__ssld_pretrained.pdparams)
- [PPLCNet_x2_5_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_ssld_pretrained.pdparams)
- MobileNetV3系列<sup>[[3](#ref3)]</sup>([论文地址](https://arxiv.org/abs/1905.02244))
- [MobileNetV3_large_x0_35](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_35_pretrained.pdparams)
- [MobileNetV3_large_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams)
......@@ -249,7 +249,7 @@
- [LeViT_192](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams)
- [LeViT_256](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams)
- [LeViT_384](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_384_pretrained.pdparams)
- Twins系列<sup>[[34](#ref43)]</sup>([论文地址](https://arxiv.org/pdf/2104.13840.pdf))
- Twins系列<sup>[[34](#ref34)]</sup>([论文地址](https://arxiv.org/pdf/2104.13840.pdf))
- [pcpvt_small](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams)
- [pcpvt_base](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams)
- [pcpvt_large](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams)
......
......@@ -271,7 +271,7 @@ python3 tools/export_model.py \
其中,`Global.pretrained_model`用于指定模型文件路径,该路径仍无需包含模型文件后缀名(如[2.2.2 特征模型恢复训练](#特征模型恢复训练))。当执行后,会在当前目录下生成`./inference`目录,目录下包含`inference.pdiparams``inference.pdiparams.info``inference.pdmodel`文件。`Global.save_inference_dir`可以指定导出inference模型的路径。此处保存的inference模型在embedding特征层做了截断,即模型最终的输出为n维embedding特征。
上述命令将生成模型结构文件(`inference.pdmodel`)和模型权重文件(`inference.pdiparams`),然后可以使用预测引擎进行推理。使用inference模型推理的流程可以参考[基于Python预测引擎预测推理](https://github.com/PaddlePaddle/PaddleClas/blob/develop/docs/zh_CN/inference.md)
上述命令将生成模型结构文件(`inference.pdmodel`)和模型权重文件(`inference.pdiparams`),然后可以使用预测引擎进行推理。使用inference模型推理的流程可以参考[基于Python预测引擎预测推理](../inference_deployment/python_deploy.md)
<a name="特征检索"></a>
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册