Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
a0ed3fef
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a0ed3fef
编写于
9月 13, 2020
作者:
littletomatodonkey
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix res2net
上级
1921935e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
27 addition
and
30 deletion
+27
-30
ppcls/modeling/architectures/res2net_vd.py
ppcls/modeling/architectures/res2net_vd.py
+27
-30
未找到文件。
ppcls/modeling/architectures/res2net_vd.py
浏览文件 @
a0ed3fef
...
...
@@ -18,9 +18,12 @@ from __future__ import print_function
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddle.nn.initializer
import
Uniform
import
math
...
...
@@ -31,7 +34,7 @@ __all__ = [
]
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
class
ConvBNLayer
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
...
...
@@ -45,21 +48,17 @@ class ConvBNLayer(fluid.dygraph.Layer):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
Pool2D
(
pool_size
=
2
,
pool_stride
=
2
,
pool_padding
=
0
,
pool_type
=
'avg'
,
ceil_mode
=
True
)
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
self
.
_pool2d_avg
=
AvgPool2d
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param
_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
weight
_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
...
...
@@ -81,7 +80,7 @@ class ConvBNLayer(fluid.dygraph.Layer):
return
y
class
BottleneckBlock
(
fluid
.
dygraph
.
Layer
):
class
BottleneckBlock
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels1
,
num_channels2
,
...
...
@@ -112,8 +111,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
act
=
'relu'
,
name
=
name
+
'_branch2b_'
+
str
(
s
+
1
)))
self
.
conv1_list
.
append
(
conv1
)
self
.
pool2d_avg
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
stride
,
pool_padding
=
1
,
pool_type
=
'avg'
)
self
.
pool2d_avg
=
AvgPool2d
(
kernel_size
=
3
,
stride
=
stride
,
padding
=
1
,
ceil_mode
=
True
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
...
...
@@ -135,7 +134,7 @@ class BottleneckBlock(fluid.dygraph.Layer):
def
forward
(
self
,
inputs
):
y
=
self
.
conv0
(
inputs
)
xs
=
fluid
.
layers
.
split
(
y
,
self
.
scales
,
1
)
xs
=
paddle
.
split
(
y
,
self
.
scales
,
1
)
ys
=
[]
for
s
,
conv1
in
enumerate
(
self
.
conv1_list
):
if
s
==
0
or
self
.
stride
==
2
:
...
...
@@ -146,18 +145,18 @@ class BottleneckBlock(fluid.dygraph.Layer):
ys
.
append
(
xs
[
-
1
])
else
:
ys
.
append
(
self
.
pool2d_avg
(
xs
[
-
1
]))
conv1
=
fluid
.
layers
.
concat
(
ys
,
axis
=
1
)
conv1
=
paddle
.
concat
(
ys
,
axis
=
1
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
class
Res2Net_vd
(
fluid
.
dygraph
.
Layer
):
class
Res2Net_vd
(
nn
.
Layer
):
def
__init__
(
self
,
layers
=
50
,
scales
=
4
,
width
=
26
,
class_dim
=
1000
):
super
(
Res2Net_vd
,
self
).
__init__
()
...
...
@@ -203,8 +202,8 @@ class Res2Net_vd(fluid.dygraph.Layer):
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_3"
)
self
.
pool2d_max
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
self
.
pool2d_max
=
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
ceil_mode
=
True
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
depth
)):
...
...
@@ -232,8 +231,7 @@ class Res2Net_vd(fluid.dygraph.Layer):
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
Pool2D
(
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
pool2d_avg
=
AdaptiveAvgPool2d
(
1
)
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
...
...
@@ -242,9 +240,8 @@ class Res2Net_vd(fluid.dygraph.Layer):
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
class_dim
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
def
forward
(
self
,
inputs
):
...
...
@@ -255,7 +252,7 @@ class Res2Net_vd(fluid.dygraph.Layer):
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
return
y
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录