Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
a0b0a4d0
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
116
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a0b0a4d0
编写于
4月 25, 2021
作者:
L
lyuwenyu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove commends code
上级
4b26fc42
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
0 addition
and
98 deletion
+0
-98
hubconf.py
hubconf.py
+0
-98
未找到文件。
hubconf.py
浏览文件 @
a0b0a4d0
...
...
@@ -32,12 +32,6 @@ from ppcls.modeling.architectures import mobilenet_v3 as _mobilenet_v3
from
ppcls.modeling.architectures
import
resnext
as
_resnext
# _checkpoints = {
# 'ResNet18': 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams',
# 'ResNet34': 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams',
# }
def
_load_pretrained_urls
():
'''Load pretrained model parameters url from README.md
'''
...
...
@@ -77,8 +71,6 @@ def _load_pretrained_parameters(model, name):
def
AlexNet
(
pretrained
=
False
,
**
kwargs
):
'''AlexNet
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_alexnet
.
AlexNet
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'AlexNet'
)
...
...
@@ -90,8 +82,6 @@ def AlexNet(pretrained=False, **kwargs):
def
VGG11
(
pretrained
=
False
,
**
kwargs
):
'''VGG11
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_vgg
.
VGG11
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG11'
)
...
...
@@ -102,8 +92,6 @@ def VGG11(pretrained=False, **kwargs):
def
VGG13
(
pretrained
=
False
,
**
kwargs
):
'''VGG13
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_vgg
.
VGG13
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG13'
)
...
...
@@ -114,8 +102,6 @@ def VGG13(pretrained=False, **kwargs):
def
VGG16
(
pretrained
=
False
,
**
kwargs
):
'''VGG16
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_vgg
.
VGG16
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG16'
)
...
...
@@ -126,8 +112,6 @@ def VGG16(pretrained=False, **kwargs):
def
VGG19
(
pretrained
=
False
,
**
kwargs
):
'''VGG19
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_vgg
.
VGG19
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG19'
)
...
...
@@ -140,8 +124,6 @@ def VGG19(pretrained=False, **kwargs):
def
ResNet18
(
pretrained
=
False
,
**
kwargs
):
'''ResNet18
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_resnet
.
ResNet18
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet18'
)
...
...
@@ -152,8 +134,6 @@ def ResNet18(pretrained=False, **kwargs):
def
ResNet34
(
pretrained
=
False
,
**
kwargs
):
'''ResNet34
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_resnet
.
ResNet34
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet34'
)
...
...
@@ -164,8 +144,6 @@ def ResNet34(pretrained=False, **kwargs):
def
ResNet50
(
pretrained
=
False
,
**
kwargs
):
'''ResNet50
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_resnet
.
ResNet50
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet50'
)
...
...
@@ -176,8 +154,6 @@ def ResNet50(pretrained=False, **kwargs):
def
ResNet101
(
pretrained
=
False
,
**
kwargs
):
'''ResNet101
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_resnet
.
ResNet101
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet101'
)
...
...
@@ -188,8 +164,6 @@ def ResNet101(pretrained=False, **kwargs):
def
ResNet152
(
pretrained
=
False
,
**
kwargs
):
'''ResNet152
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_resnet
.
ResNet152
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet152'
)
...
...
@@ -201,8 +175,6 @@ def ResNet152(pretrained=False, **kwargs):
def
SqueezeNet1_0
(
pretrained
=
False
,
**
kwargs
):
'''SqueezeNet1_0
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_squeezenet
.
SqueezeNet1_0
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'SqueezeNet1_0'
)
...
...
@@ -213,8 +185,6 @@ def SqueezeNet1_0(pretrained=False, **kwargs):
def
SqueezeNet1_1
(
pretrained
=
False
,
**
kwargs
):
'''SqueezeNet1_1
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_squeezenet
.
SqueezeNet1_1
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'SqueezeNet1_1'
)
...
...
@@ -227,8 +197,6 @@ def SqueezeNet1_1(pretrained=False, **kwargs):
def
DenseNet121
(
pretrained
=
False
,
**
kwargs
):
'''DenseNet121
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_densenet
.
DenseNet121
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet121'
)
...
...
@@ -239,8 +207,6 @@ def DenseNet121(pretrained=False, **kwargs):
def
DenseNet161
(
pretrained
=
False
,
**
kwargs
):
'''DenseNet161
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_densenet
.
DenseNet161
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet161'
)
...
...
@@ -251,8 +217,6 @@ def DenseNet161(pretrained=False, **kwargs):
def
DenseNet169
(
pretrained
=
False
,
**
kwargs
):
'''DenseNet169
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_densenet
.
DenseNet169
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet169'
)
...
...
@@ -263,8 +227,6 @@ def DenseNet169(pretrained=False, **kwargs):
def
DenseNet201
(
pretrained
=
False
,
**
kwargs
):
'''DenseNet201
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_densenet
.
DenseNet201
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet201'
)
...
...
@@ -275,8 +237,6 @@ def DenseNet201(pretrained=False, **kwargs):
def
DenseNet264
(
pretrained
=
False
,
**
kwargs
):
'''DenseNet264
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_densenet
.
DenseNet264
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet264'
)
...
...
@@ -288,8 +248,6 @@ def DenseNet264(pretrained=False, **kwargs):
def
InceptionV3
(
pretrained
=
False
,
**
kwargs
):
'''InceptionV3
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_inception_v3
.
InceptionV3
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'InceptionV3'
)
...
...
@@ -300,8 +258,6 @@ def InceptionV3(pretrained=False, **kwargs):
def
InceptionV4
(
pretrained
=
False
,
**
kwargs
):
'''InceptionV4
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_inception_v4
.
InceptionV4
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'InceptionV4'
)
...
...
@@ -313,8 +269,6 @@ def InceptionV4(pretrained=False, **kwargs):
def
GoogLeNet
(
pretrained
=
False
,
**
kwargs
):
'''GoogLeNet
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_googlenet
.
GoogLeNet
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'GoogLeNet'
)
...
...
@@ -326,8 +280,6 @@ def GoogLeNet(pretrained=False, **kwargs):
def
ShuffleNet
(
pretrained
=
False
,
**
kwargs
):
'''ShuffleNet
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_shufflenet_v2
.
ShuffleNet
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ShuffleNet'
)
...
...
@@ -339,8 +291,6 @@ def ShuffleNet(pretrained=False, **kwargs):
def
MobileNetV1
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV1
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v1
.
MobileNetV1
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1'
)
...
...
@@ -351,8 +301,6 @@ def MobileNetV1(pretrained=False, **kwargs):
def
MobileNetV1_x0_25
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV1_x0_25
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v1
.
MobileNetV1_x0_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_25'
)
...
...
@@ -363,8 +311,6 @@ def MobileNetV1_x0_25(pretrained=False, **kwargs):
def
MobileNetV1_x0_5
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV1_x0_5
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v1
.
MobileNetV1_x0_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_5'
)
...
...
@@ -375,8 +321,6 @@ def MobileNetV1_x0_5(pretrained=False, **kwargs):
def
MobileNetV1_x0_75
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV1_x0_75
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v1
.
MobileNetV1_x0_75
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_75'
)
...
...
@@ -387,8 +331,6 @@ def MobileNetV1_x0_75(pretrained=False, **kwargs):
def
MobileNetV2_x0_25
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV2_x0_25
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v2
.
MobileNetV2_x0_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_25'
)
...
...
@@ -399,8 +341,6 @@ def MobileNetV2_x0_25(pretrained=False, **kwargs):
def
MobileNetV2_x0_5
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV2_x0_5
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v2
.
MobileNetV2_x0_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_5'
)
...
...
@@ -411,8 +351,6 @@ def MobileNetV2_x0_5(pretrained=False, **kwargs):
def
MobileNetV2_x0_75
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV2_x0_75
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v2
.
MobileNetV2_x0_75
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_75'
)
...
...
@@ -423,8 +361,6 @@ def MobileNetV2_x0_75(pretrained=False, **kwargs):
def
MobileNetV2_x1_5
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV2_x1_5
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v2
.
MobileNetV2_x1_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x1_5'
)
...
...
@@ -435,8 +371,6 @@ def MobileNetV2_x1_5(pretrained=False, **kwargs):
def
MobileNetV2_x2_0
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV2_x2_0
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v2
.
MobileNetV2_x2_0
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x2_0'
)
...
...
@@ -447,8 +381,6 @@ def MobileNetV2_x2_0(pretrained=False, **kwargs):
def
MobileNetV3_large_x0_35
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_large_x0_35
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_large_x0_35
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_35'
)
...
...
@@ -459,8 +391,6 @@ def MobileNetV3_large_x0_35(pretrained=False, **kwargs):
def
MobileNetV3_large_x0_5
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_large_x0_5
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_large_x0_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_5'
)
...
...
@@ -471,8 +401,6 @@ def MobileNetV3_large_x0_5(pretrained=False, **kwargs):
def
MobileNetV3_large_x0_75
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_large_x0_75
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_large_x0_75
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_75'
)
...
...
@@ -483,8 +411,6 @@ def MobileNetV3_large_x0_75(pretrained=False, **kwargs):
def
MobileNetV3_large_x1_0
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_large_x1_0
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_large_x1_0
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x1_0'
)
...
...
@@ -495,8 +421,6 @@ def MobileNetV3_large_x1_0(pretrained=False, **kwargs):
def
MobileNetV3_large_x1_25
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_large_x1_25
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_large_x1_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x1_25'
)
...
...
@@ -507,8 +431,6 @@ def MobileNetV3_large_x1_25(pretrained=False, **kwargs):
def
MobileNetV3_small_x0_35
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_small_x0_35
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_small_x0_35
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_35'
)
...
...
@@ -519,8 +441,6 @@ def MobileNetV3_small_x0_35(pretrained=False, **kwargs):
def
MobileNetV3_small_x0_5
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_small_x0_5
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_small_x0_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_5'
)
...
...
@@ -531,8 +451,6 @@ def MobileNetV3_small_x0_5(pretrained=False, **kwargs):
def
MobileNetV3_small_x0_75
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_small_x0_75
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_small_x0_75
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_75'
)
...
...
@@ -543,8 +461,6 @@ def MobileNetV3_small_x0_75(pretrained=False, **kwargs):
def
MobileNetV3_small_x1_0
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_small_x1_0
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_small_x1_0
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x1_0'
)
...
...
@@ -555,8 +471,6 @@ def MobileNetV3_small_x1_0(pretrained=False, **kwargs):
def
MobileNetV3_small_x1_25
(
pretrained
=
False
,
**
kwargs
):
'''MobileNetV3_small_x1_25
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_mobilenet_v3
.
MobileNetV3_small_x1_25
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x1_25'
)
...
...
@@ -568,8 +482,6 @@ def MobileNetV3_small_x1_25(pretrained=False, **kwargs):
def
ResNeXt101_32x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt101_32x4d
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_resnext
.
ResNeXt101_32x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt101_32x4d'
)
...
...
@@ -580,8 +492,6 @@ def ResNeXt101_32x4d(pretrained=False, **kwargs):
def
ResNeXt101_64x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt101_64x4d
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_resnext
.
ResNeXt101_64x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt101_64x4d'
)
...
...
@@ -592,8 +502,6 @@ def ResNeXt101_64x4d(pretrained=False, **kwargs):
def
ResNeXt152_32x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt152_32x4d
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_resnext
.
ResNeXt152_32x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt152_32x4d'
)
...
...
@@ -604,8 +512,6 @@ def ResNeXt152_32x4d(pretrained=False, **kwargs):
def
ResNeXt152_64x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt152_64x4d
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_resnext
.
ResNeXt152_64x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt152_64x4d'
)
...
...
@@ -616,8 +522,6 @@ def ResNeXt152_64x4d(pretrained=False, **kwargs):
def
ResNeXt50_32x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt50_32x4d
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_resnext
.
ResNeXt50_32x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt50_32x4d'
)
...
...
@@ -628,8 +532,6 @@ def ResNeXt50_32x4d(pretrained=False, **kwargs):
def
ResNeXt50_64x4d
(
pretrained
=
False
,
**
kwargs
):
'''ResNeXt50_64x4d
'''
# pretrained = kwargs.pop('pretrained', False)
model
=
_resnext
.
ResNeXt50_64x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt50_64x4d'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录