提交 a0b0a4d0 编写于 作者: L lyuwenyu

remove commends code

上级 4b26fc42
......@@ -32,12 +32,6 @@ from ppcls.modeling.architectures import mobilenet_v3 as _mobilenet_v3
from ppcls.modeling.architectures import resnext as _resnext
# _checkpoints = {
# 'ResNet18': 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams',
# 'ResNet34': 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams',
# }
def _load_pretrained_urls():
'''Load pretrained model parameters url from README.md
'''
......@@ -77,8 +71,6 @@ def _load_pretrained_parameters(model, name):
def AlexNet(pretrained=False, **kwargs):
'''AlexNet
'''
# pretrained = kwargs.pop('pretrained', False)
model = _alexnet.AlexNet(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'AlexNet')
......@@ -90,8 +82,6 @@ def AlexNet(pretrained=False, **kwargs):
def VGG11(pretrained=False, **kwargs):
'''VGG11
'''
# pretrained = kwargs.pop('pretrained', False)
model = _vgg.VGG11(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'VGG11')
......@@ -102,8 +92,6 @@ def VGG11(pretrained=False, **kwargs):
def VGG13(pretrained=False, **kwargs):
'''VGG13
'''
# pretrained = kwargs.pop('pretrained', False)
model = _vgg.VGG13(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'VGG13')
......@@ -114,8 +102,6 @@ def VGG13(pretrained=False, **kwargs):
def VGG16(pretrained=False, **kwargs):
'''VGG16
'''
# pretrained = kwargs.pop('pretrained', False)
model = _vgg.VGG16(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'VGG16')
......@@ -126,8 +112,6 @@ def VGG16(pretrained=False, **kwargs):
def VGG19(pretrained=False, **kwargs):
'''VGG19
'''
# pretrained = kwargs.pop('pretrained', False)
model = _vgg.VGG19(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'VGG19')
......@@ -140,8 +124,6 @@ def VGG19(pretrained=False, **kwargs):
def ResNet18(pretrained=False, **kwargs):
'''ResNet18
'''
# pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet18(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'ResNet18')
......@@ -152,8 +134,6 @@ def ResNet18(pretrained=False, **kwargs):
def ResNet34(pretrained=False, **kwargs):
'''ResNet34
'''
# pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet34(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'ResNet34')
......@@ -164,8 +144,6 @@ def ResNet34(pretrained=False, **kwargs):
def ResNet50(pretrained=False, **kwargs):
'''ResNet50
'''
# pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet50(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'ResNet50')
......@@ -176,8 +154,6 @@ def ResNet50(pretrained=False, **kwargs):
def ResNet101(pretrained=False, **kwargs):
'''ResNet101
'''
# pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet101(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'ResNet101')
......@@ -188,8 +164,6 @@ def ResNet101(pretrained=False, **kwargs):
def ResNet152(pretrained=False, **kwargs):
'''ResNet152
'''
# pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet152(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'ResNet152')
......@@ -201,8 +175,6 @@ def ResNet152(pretrained=False, **kwargs):
def SqueezeNet1_0(pretrained=False, **kwargs):
'''SqueezeNet1_0
'''
# pretrained = kwargs.pop('pretrained', False)
model = _squeezenet.SqueezeNet1_0(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'SqueezeNet1_0')
......@@ -213,8 +185,6 @@ def SqueezeNet1_0(pretrained=False, **kwargs):
def SqueezeNet1_1(pretrained=False, **kwargs):
'''SqueezeNet1_1
'''
# pretrained = kwargs.pop('pretrained', False)
model = _squeezenet.SqueezeNet1_1(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'SqueezeNet1_1')
......@@ -227,8 +197,6 @@ def SqueezeNet1_1(pretrained=False, **kwargs):
def DenseNet121(pretrained=False, **kwargs):
'''DenseNet121
'''
# pretrained = kwargs.pop('pretrained', False)
model = _densenet.DenseNet121(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'DenseNet121')
......@@ -239,8 +207,6 @@ def DenseNet121(pretrained=False, **kwargs):
def DenseNet161(pretrained=False, **kwargs):
'''DenseNet161
'''
# pretrained = kwargs.pop('pretrained', False)
model = _densenet.DenseNet161(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'DenseNet161')
......@@ -251,8 +217,6 @@ def DenseNet161(pretrained=False, **kwargs):
def DenseNet169(pretrained=False, **kwargs):
'''DenseNet169
'''
# pretrained = kwargs.pop('pretrained', False)
model = _densenet.DenseNet169(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'DenseNet169')
......@@ -263,8 +227,6 @@ def DenseNet169(pretrained=False, **kwargs):
def DenseNet201(pretrained=False, **kwargs):
'''DenseNet201
'''
# pretrained = kwargs.pop('pretrained', False)
model = _densenet.DenseNet201(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'DenseNet201')
......@@ -275,8 +237,6 @@ def DenseNet201(pretrained=False, **kwargs):
def DenseNet264(pretrained=False, **kwargs):
'''DenseNet264
'''
# pretrained = kwargs.pop('pretrained', False)
model = _densenet.DenseNet264(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'DenseNet264')
......@@ -288,8 +248,6 @@ def DenseNet264(pretrained=False, **kwargs):
def InceptionV3(pretrained=False, **kwargs):
'''InceptionV3
'''
# pretrained = kwargs.pop('pretrained', False)
model = _inception_v3.InceptionV3(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'InceptionV3')
......@@ -300,8 +258,6 @@ def InceptionV3(pretrained=False, **kwargs):
def InceptionV4(pretrained=False, **kwargs):
'''InceptionV4
'''
# pretrained = kwargs.pop('pretrained', False)
model = _inception_v4.InceptionV4(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'InceptionV4')
......@@ -313,8 +269,6 @@ def InceptionV4(pretrained=False, **kwargs):
def GoogLeNet(pretrained=False, **kwargs):
'''GoogLeNet
'''
# pretrained = kwargs.pop('pretrained', False)
model = _googlenet.GoogLeNet(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'GoogLeNet')
......@@ -326,8 +280,6 @@ def GoogLeNet(pretrained=False, **kwargs):
def ShuffleNet(pretrained=False, **kwargs):
'''ShuffleNet
'''
# pretrained = kwargs.pop('pretrained', False)
model = _shufflenet_v2.ShuffleNet(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'ShuffleNet')
......@@ -339,8 +291,6 @@ def ShuffleNet(pretrained=False, **kwargs):
def MobileNetV1(pretrained=False, **kwargs):
'''MobileNetV1
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v1.MobileNetV1(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV1')
......@@ -351,8 +301,6 @@ def MobileNetV1(pretrained=False, **kwargs):
def MobileNetV1_x0_25(pretrained=False, **kwargs):
'''MobileNetV1_x0_25
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v1.MobileNetV1_x0_25(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV1_x0_25')
......@@ -363,8 +311,6 @@ def MobileNetV1_x0_25(pretrained=False, **kwargs):
def MobileNetV1_x0_5(pretrained=False, **kwargs):
'''MobileNetV1_x0_5
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v1.MobileNetV1_x0_5(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV1_x0_5')
......@@ -375,8 +321,6 @@ def MobileNetV1_x0_5(pretrained=False, **kwargs):
def MobileNetV1_x0_75(pretrained=False, **kwargs):
'''MobileNetV1_x0_75
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v1.MobileNetV1_x0_75(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV1_x0_75')
......@@ -387,8 +331,6 @@ def MobileNetV1_x0_75(pretrained=False, **kwargs):
def MobileNetV2_x0_25(pretrained=False, **kwargs):
'''MobileNetV2_x0_25
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x0_25(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV2_x0_25')
......@@ -399,8 +341,6 @@ def MobileNetV2_x0_25(pretrained=False, **kwargs):
def MobileNetV2_x0_5(pretrained=False, **kwargs):
'''MobileNetV2_x0_5
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x0_5(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV2_x0_5')
......@@ -411,8 +351,6 @@ def MobileNetV2_x0_5(pretrained=False, **kwargs):
def MobileNetV2_x0_75(pretrained=False, **kwargs):
'''MobileNetV2_x0_75
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x0_75(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV2_x0_75')
......@@ -423,8 +361,6 @@ def MobileNetV2_x0_75(pretrained=False, **kwargs):
def MobileNetV2_x1_5(pretrained=False, **kwargs):
'''MobileNetV2_x1_5
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x1_5(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV2_x1_5')
......@@ -435,8 +371,6 @@ def MobileNetV2_x1_5(pretrained=False, **kwargs):
def MobileNetV2_x2_0(pretrained=False, **kwargs):
'''MobileNetV2_x2_0
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x2_0(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV2_x2_0')
......@@ -447,8 +381,6 @@ def MobileNetV2_x2_0(pretrained=False, **kwargs):
def MobileNetV3_large_x0_35(pretrained=False, **kwargs):
'''MobileNetV3_large_x0_35
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x0_35(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV3_large_x0_35')
......@@ -459,8 +391,6 @@ def MobileNetV3_large_x0_35(pretrained=False, **kwargs):
def MobileNetV3_large_x0_5(pretrained=False, **kwargs):
'''MobileNetV3_large_x0_5
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x0_5(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV3_large_x0_5')
......@@ -471,8 +401,6 @@ def MobileNetV3_large_x0_5(pretrained=False, **kwargs):
def MobileNetV3_large_x0_75(pretrained=False, **kwargs):
'''MobileNetV3_large_x0_75
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x0_75(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV3_large_x0_75')
......@@ -483,8 +411,6 @@ def MobileNetV3_large_x0_75(pretrained=False, **kwargs):
def MobileNetV3_large_x1_0(pretrained=False, **kwargs):
'''MobileNetV3_large_x1_0
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x1_0(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV3_large_x1_0')
......@@ -495,8 +421,6 @@ def MobileNetV3_large_x1_0(pretrained=False, **kwargs):
def MobileNetV3_large_x1_25(pretrained=False, **kwargs):
'''MobileNetV3_large_x1_25
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x1_25(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV3_large_x1_25')
......@@ -507,8 +431,6 @@ def MobileNetV3_large_x1_25(pretrained=False, **kwargs):
def MobileNetV3_small_x0_35(pretrained=False, **kwargs):
'''MobileNetV3_small_x0_35
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x0_35(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV3_small_x0_35')
......@@ -519,8 +441,6 @@ def MobileNetV3_small_x0_35(pretrained=False, **kwargs):
def MobileNetV3_small_x0_5(pretrained=False, **kwargs):
'''MobileNetV3_small_x0_5
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x0_5(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV3_small_x0_5')
......@@ -531,8 +451,6 @@ def MobileNetV3_small_x0_5(pretrained=False, **kwargs):
def MobileNetV3_small_x0_75(pretrained=False, **kwargs):
'''MobileNetV3_small_x0_75
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x0_75(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV3_small_x0_75')
......@@ -543,8 +461,6 @@ def MobileNetV3_small_x0_75(pretrained=False, **kwargs):
def MobileNetV3_small_x1_0(pretrained=False, **kwargs):
'''MobileNetV3_small_x1_0
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x1_0(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV3_small_x1_0')
......@@ -555,8 +471,6 @@ def MobileNetV3_small_x1_0(pretrained=False, **kwargs):
def MobileNetV3_small_x1_25(pretrained=False, **kwargs):
'''MobileNetV3_small_x1_25
'''
# pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x1_25(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'MobileNetV3_small_x1_25')
......@@ -568,8 +482,6 @@ def MobileNetV3_small_x1_25(pretrained=False, **kwargs):
def ResNeXt101_32x4d(pretrained=False, **kwargs):
'''ResNeXt101_32x4d
'''
# pretrained = kwargs.pop('pretrained', False)
model = _resnext.ResNeXt101_32x4d(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'ResNeXt101_32x4d')
......@@ -580,8 +492,6 @@ def ResNeXt101_32x4d(pretrained=False, **kwargs):
def ResNeXt101_64x4d(pretrained=False, **kwargs):
'''ResNeXt101_64x4d
'''
# pretrained = kwargs.pop('pretrained', False)
model = _resnext.ResNeXt101_64x4d(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'ResNeXt101_64x4d')
......@@ -592,8 +502,6 @@ def ResNeXt101_64x4d(pretrained=False, **kwargs):
def ResNeXt152_32x4d(pretrained=False, **kwargs):
'''ResNeXt152_32x4d
'''
# pretrained = kwargs.pop('pretrained', False)
model = _resnext.ResNeXt152_32x4d(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'ResNeXt152_32x4d')
......@@ -604,8 +512,6 @@ def ResNeXt152_32x4d(pretrained=False, **kwargs):
def ResNeXt152_64x4d(pretrained=False, **kwargs):
'''ResNeXt152_64x4d
'''
# pretrained = kwargs.pop('pretrained', False)
model = _resnext.ResNeXt152_64x4d(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'ResNeXt152_64x4d')
......@@ -616,8 +522,6 @@ def ResNeXt152_64x4d(pretrained=False, **kwargs):
def ResNeXt50_32x4d(pretrained=False, **kwargs):
'''ResNeXt50_32x4d
'''
# pretrained = kwargs.pop('pretrained', False)
model = _resnext.ResNeXt50_32x4d(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'ResNeXt50_32x4d')
......@@ -628,8 +532,6 @@ def ResNeXt50_32x4d(pretrained=False, **kwargs):
def ResNeXt50_64x4d(pretrained=False, **kwargs):
'''ResNeXt50_64x4d
'''
# pretrained = kwargs.pop('pretrained', False)
model = _resnext.ResNeXt50_64x4d(**kwargs)
if pretrained:
model = _load_pretrained_parameters(model, 'ResNeXt50_64x4d')
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册