Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
96d1feb6
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
接近 2 年 前同步成功
通知
116
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
96d1feb6
编写于
6月 03, 2021
作者:
W
Wei Shengyu
提交者:
GitHub
6月 03, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #773 from RainFrost1/develop_reg
Develop reg
上级
680c0c9e
435144b5
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
540 addition
and
100 deletion
+540
-100
ppcls/arch/__init__.py
ppcls/arch/__init__.py
+10
-7
ppcls/arch/head/arcmargin.py
ppcls/arch/head/arcmargin.py
+32
-20
ppcls/arch/loss_metrics/__init__.py
ppcls/arch/loss_metrics/__init__.py
+6
-3
ppcls/configs/Vehicle/ResNet50.yaml
ppcls/configs/Vehicle/ResNet50.yaml
+153
-0
ppcls/data/__init__.py
ppcls/data/__init__.py
+8
-4
ppcls/data/dataset/common_dataset.py
ppcls/data/dataset/common_dataset.py
+1
-9
ppcls/data/dataset/vehicle_dataset.py
ppcls/data/dataset/vehicle_dataset.py
+137
-0
ppcls/data/preprocess/ops/operators.py
ppcls/data/preprocess/ops/operators.py
+12
-3
ppcls/engine/trainer.py
ppcls/engine/trainer.py
+17
-3
ppcls/losses/__init__.py
ppcls/losses/__init__.py
+9
-6
ppcls/losses/celoss.py
ppcls/losses/celoss.py
+18
-8
ppcls/losses/triplet.py
ppcls/losses/triplet.py
+27
-32
ppcls/optimizer/__init__.py
ppcls/optimizer/__init__.py
+5
-1
ppcls/optimizer/learning_rate.py
ppcls/optimizer/learning_rate.py
+105
-4
未找到文件。
ppcls/arch/__init__.py
浏览文件 @
96d1feb6
...
...
@@ -21,7 +21,7 @@ from . import backbone
from
.
import
head
from
.backbone
import
*
from
.head
import
*
from
.head
import
*
from
.utils
import
*
__all__
=
[
"build_model"
,
"RecModel"
]
...
...
@@ -43,20 +43,23 @@ class RecModel(nn.Layer):
backbone_name
=
backbone_config
.
pop
(
"name"
)
self
.
backbone
=
eval
(
backbone_name
)(
**
backbone_config
)
assert
"Stoplayer"
in
config
,
"Stoplayer should be specified in retrieval task
\
assert
"Stoplayer"
in
config
,
"Stoplayer should be specified in retrieval task
\
please specified a Stoplayer config"
stop_layer_config
=
config
[
"Stoplayer"
]
self
.
backbone
.
stop_after
(
stop_layer_config
[
"name"
])
if
stop_layer_config
.
get
(
"embedding_size"
,
0
)
>
0
:
self
.
neck
=
nn
.
Linear
(
stop_layer_config
[
"output_dim"
],
stop_layer_config
[
"embedding_size"
])
self
.
neck
=
nn
.
Linear
(
stop_layer_config
[
"output_dim"
],
stop_layer_config
[
"embedding_size"
])
embedding_size
=
stop_layer_config
[
"embedding_size"
]
else
:
self
.
neck
=
None
embedding_size
=
stop_layer_config
[
"output_dim"
]
assert
"Head"
in
config
,
"Head should be specified in retrieval task
\
assert
"Head"
in
config
,
"Head should be specified in retrieval task
\
please specify a Head config"
config
[
"Head"
][
"embedding_size"
]
=
embedding_size
self
.
head
=
build_head
(
config
[
"Head"
])
...
...
@@ -65,4 +68,4 @@ class RecModel(nn.Layer):
if
self
.
neck
is
not
None
:
x
=
self
.
neck
(
x
)
y
=
self
.
head
(
x
,
label
)
return
{
"features"
:
x
,
"logits"
:
y
}
return
{
"features"
:
x
,
"logits"
:
y
}
ppcls/arch/head/arcmargin.py
浏览文件 @
96d1feb6
...
...
@@ -16,35 +16,46 @@ import paddle
import
paddle.nn
as
nn
import
math
class
ArcMargin
(
nn
.
Layer
):
def
__init__
(
self
,
embedding_size
,
class_num
,
margin
=
0.5
,
scale
=
80.0
,
easy_margin
=
False
):
def
__init__
(
self
,
embedding_size
,
class_num
,
margin
=
0.5
,
scale
=
80.0
,
easy_margin
=
False
):
super
(
ArcMargin
,
self
).
__init__
()
self
.
embedding_size
=
embedding_size
self
.
class_num
=
class_num
self
.
margin
=
margin
self
.
scale
=
scale
self
.
embedding_size
=
embedding_size
self
.
class_num
=
class_num
self
.
margin
=
margin
self
.
scale
=
scale
self
.
easy_margin
=
easy_margin
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
paddle
.
nn
.
initializer
.
XavierNormal
())
self
.
fc
=
nn
.
Linear
(
self
.
embedding_size
,
self
.
class_num
,
weight_attr
=
weight_attr
,
bias_attr
=
False
)
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
paddle
.
nn
.
initializer
.
XavierNormal
())
self
.
fc
=
nn
.
Linear
(
self
.
embedding_size
,
self
.
class_num
,
weight_attr
=
weight_attr
,
bias_attr
=
False
)
def
forward
(
self
,
input
,
label
):
input_norm
=
paddle
.
sqrt
(
paddle
.
sum
(
paddle
.
square
(
input
),
axis
=
1
,
keepdim
=
True
))
input_norm
=
paddle
.
sqrt
(
paddle
.
sum
(
paddle
.
square
(
input
),
axis
=
1
,
keepdim
=
True
))
input
=
paddle
.
divide
(
input
,
input_norm
)
weight
=
self
.
fc
.
weight
weight_norm
=
paddle
.
sqrt
(
paddle
.
sum
(
paddle
.
square
(
weight
),
axis
=
0
,
keepdim
=
True
))
weight_norm
=
paddle
.
sqrt
(
paddle
.
sum
(
paddle
.
square
(
weight
),
axis
=
0
,
keepdim
=
True
))
weight
=
paddle
.
divide
(
weight
,
weight_norm
)
cos
=
paddle
.
matmul
(
input
,
weight
)
sin
=
paddle
.
sqrt
(
1.0
-
paddle
.
square
(
cos
)
+
1e-6
)
cos
=
paddle
.
matmul
(
input
,
weight
)
if
not
self
.
training
:
return
cos
sin
=
paddle
.
sqrt
(
1.0
-
paddle
.
square
(
cos
)
+
1e-6
)
cos_m
=
math
.
cos
(
self
.
margin
)
sin_m
=
math
.
sin
(
self
.
margin
)
phi
=
cos
*
cos_m
-
sin
*
sin_m
phi
=
cos
*
cos_m
-
sin
*
sin_m
th
=
math
.
cos
(
self
.
margin
)
*
(
-
1
)
mm
=
math
.
sin
(
self
.
margin
)
*
self
.
margin
...
...
@@ -55,11 +66,12 @@ class ArcMargin(nn.Layer):
one_hot
=
paddle
.
nn
.
functional
.
one_hot
(
label
,
self
.
class_num
)
one_hot
=
paddle
.
squeeze
(
one_hot
,
axis
=
[
1
])
output
=
paddle
.
multiply
(
one_hot
,
phi
)
+
paddle
.
multiply
((
1.0
-
one_hot
),
cos
)
output
=
output
*
self
.
scale
output
=
paddle
.
multiply
(
one_hot
,
phi
)
+
paddle
.
multiply
(
(
1.0
-
one_hot
),
cos
)
output
=
output
*
self
.
scale
return
output
def
_paddle_where_more_than
(
self
,
target
,
limit
,
x
,
y
):
mask
=
paddle
.
cast
(
x
=
(
target
>
limit
),
dtype
=
'float32'
)
mask
=
paddle
.
cast
(
x
=
(
target
>
limit
),
dtype
=
'float32'
)
output
=
paddle
.
multiply
(
mask
,
x
)
+
paddle
.
multiply
((
1.0
-
mask
),
y
)
return
output
ppcls/arch/loss_metrics/__init__.py
浏览文件 @
96d1feb6
...
...
@@ -12,8 +12,8 @@
#See the License for the specific language governing permissions and
#limitations under the License.
import
sys
import
copy
import
sys
import
paddle
import
paddle.nn
as
nn
...
...
@@ -46,8 +46,8 @@ class CELoss(nn.Layer):
if
self
.
epsilon
is
not
None
:
class_num
=
logits
.
shape
[
-
1
]
label
=
self
.
_labelsmoothing
(
label
,
class_num
)
x
=
-
F
.
log_softmax
(
x
,
axis
=-
1
)
loss
=
paddle
.
sum
(
x
*
label
,
axis
=-
1
)
x
=
-
F
.
log_softmax
(
logits
,
axis
=-
1
)
loss
=
paddle
.
sum
(
logits
*
label
,
axis
=-
1
)
else
:
if
label
.
shape
[
-
1
]
==
logits
.
shape
[
-
1
]:
label
=
F
.
softmax
(
label
,
axis
=-
1
)
...
...
@@ -69,6 +69,9 @@ class Topk(nn.Layer):
self
.
topk
=
topk
def
forward
(
self
,
x
,
label
):
if
isinstance
(
x
,
dict
):
x
=
x
[
"logits"
]
metric_dict
=
dict
()
for
k
in
self
.
topk
:
metric_dict
[
"top{}"
.
format
(
k
)]
=
paddle
.
metric
.
accuracy
(
...
...
ppcls/configs/Vehicle/ResNet50.yaml
0 → 100644
浏览文件 @
96d1feb6
# global configs
Global
:
checkpoints
:
null
pretrained_model
:
null
output_dir
:
"
./output/"
device
:
"
gpu"
class_num
:
431
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
epochs
:
160
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
224
,
224
]
save_inference_dir
:
"
./inference"
# model architecture
Arch
:
name
:
"
RecModel"
Backbone
:
name
:
"
ResNet50"
Stoplayer
:
name
:
"
flatten_0"
output_dim
:
2048
embedding_size
:
512
Head
:
name
:
"
ArcMargin"
embedding_size
:
512
class_num
:
431
margin
:
0.15
scale
:
32
# loss function config for traing/eval process
Loss
:
Train
:
-
CELoss
:
weight
:
1.0
-
TripletLossV2
:
weight
:
1.0
margin
:
0.5
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
MultiStepDecay
learning_rate
:
0.01
milestones
:
[
30
,
60
,
70
,
80
,
90
,
100
,
120
,
140
]
gamma
:
0.5
verbose
:
False
last_epoch
:
-1
regularizer
:
name
:
'
L2'
coeff
:
0.0005
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
"
CompCars"
image_root
:
"
/work/dataset/CompCars/image/"
label_root
:
"
/work/dataset/CompCars/label/"
bbox_crop
:
True
cls_label_path
:
"
/work/dataset/CompCars/train_test_split/classification/train_label.txt"
transform_ops
:
-
ResizeImage
:
size
:
224
-
RandFlipImage
:
flip_code
:
1
-
AugMix
:
prob
:
0.5
-
NormalizeImage
:
scale
:
0.00392157
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
RandomErasing
:
EPSILON
:
0.5
sl
:
0.02
sh
:
0.4
r1
:
0.3
mean
:
[
0.
,
0.
,
0.
]
sampler
:
name
:
DistributedRandomIdentitySampler
batch_size
:
64
num_instances
:
2
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
6
use_shared_memory
:
False
Eval
:
# TOTO: modify to the latest trainer
dataset
:
name
:
"
CompCars"
image_root
:
"
/work/dataset/CompCars/image/"
label_root
:
"
/work/dataset/CompCars/label/"
cls_label_path
:
"
/work/dataset/CompCars/train_test_split/classification/test_label.txt"
bbox_crop
:
True
transform_ops
:
-
ResizeImage
:
size
:
224
-
NormalizeImage
:
scale
:
0.00392157
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
6
use_shared_memory
:
False
Infer
:
infer_imgs
:
"
docs/images/whl/demo.jpg"
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
"
ppcls/utils/imagenet1k_label_list.txt"
Metric
:
Train
:
-
Topk
:
k
:
[
1
,
5
]
Eval
:
-
Topk
:
k
:
[
1
,
5
]
ppcls/data/__init__.py
浏览文件 @
96d1feb6
...
...
@@ -25,14 +25,17 @@ from . import samplers
from
.dataset.imagenet_dataset
import
ImageNetDataset
from
.dataset.multilabel_dataset
import
MultiLabelDataset
from
.dataset.common_dataset
import
create_operators
from
.dataset.vehicle_dataset
import
CompCars
,
VeriWild
# sampler
from
.samplers
import
DistributedRandomIdentitySampler
from
.preprocess
import
transform
def
build_dataloader
(
config
,
mode
,
device
,
seed
=
None
):
assert
mode
in
[
'Train'
,
'Eval'
,
'Test'
],
"Mode should be Train, Eval or Test."
assert
mode
in
[
'Train'
,
'Eval'
,
'Test'
],
"Mode should be Train, Eval or Test."
# build dataset
config_dataset
=
config
[
mode
][
'dataset'
]
config_dataset
=
copy
.
deepcopy
(
config_dataset
)
...
...
@@ -76,7 +79,7 @@ def build_dataloader(config, mode, device, seed=None):
batch_ops
=
create_operators
(
batch_transform
)
batch_collate_fn
=
mix_collate_fn
else
:
batch_collate_fn
=
None
batch_collate_fn
=
None
# build dataloader
config_loader
=
config
[
mode
][
'loader'
]
...
...
@@ -105,9 +108,10 @@ def build_dataloader(config, mode, device, seed=None):
collate_fn
=
batch_collate_fn
)
logger
.
info
(
"build data_loader({}) success..."
.
format
(
data_loader
))
return
data_loader
'''
# TODO: fix the format
def build_dataloader(config, mode, device, seed=None):
...
...
ppcls/data/dataset/common_dataset.py
浏览文件 @
96d1feb6
...
...
@@ -14,17 +14,10 @@
from
__future__
import
print_function
import
io
import
tarfile
import
numpy
as
np
from
PIL
import
Image
#all use default backend
import
paddle
from
paddle.io
import
Dataset
import
pickle
import
os
import
cv2
import
random
from
ppcls.data
import
preprocess
from
ppcls.data.preprocess
import
transform
...
...
@@ -65,7 +58,7 @@ class CommonDataset(Dataset):
self
.
labels
=
[]
self
.
_load_anno
()
def
_load_anno
(
self
):
def
_load_anno
(
self
):
pass
def
__getitem__
(
self
,
idx
):
...
...
@@ -89,4 +82,3 @@ class CommonDataset(Dataset):
@
property
def
class_num
(
self
):
return
len
(
set
(
self
.
labels
))
ppcls/data/dataset/vehicle_dataset.py
0 → 100644
浏览文件 @
96d1feb6
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
paddle
from
paddle.io
import
Dataset
import
os
import
cv2
from
ppcls.data
import
preprocess
from
ppcls.data.preprocess
import
transform
from
ppcls.utils
import
logger
from
.common_dataset
import
create_operators
class
CompCars
(
Dataset
):
def
__init__
(
self
,
image_root
,
cls_label_path
,
label_root
=
None
,
transform_ops
=
None
,
bbox_crop
=
False
):
self
.
_img_root
=
image_root
self
.
_cls_path
=
cls_label_path
self
.
_label_root
=
label_root
if
transform_ops
:
self
.
_transform_ops
=
create_operators
(
transform_ops
)
self
.
_bbox_crop
=
bbox_crop
self
.
_dtype
=
paddle
.
get_default_dtype
()
self
.
_load_anno
()
def
_load_anno
(
self
):
assert
os
.
path
.
exists
(
self
.
_cls_path
)
assert
os
.
path
.
exists
(
self
.
_img_root
)
if
self
.
_bbox_crop
:
assert
os
.
path
.
exists
(
self
.
_label_root
)
self
.
images
=
[]
self
.
labels
=
[]
self
.
bboxes
=
[]
with
open
(
self
.
_cls_path
)
as
fd
:
lines
=
fd
.
readlines
()
for
l
in
lines
:
l
=
l
.
strip
().
split
()
if
not
self
.
_bbox_crop
:
self
.
images
.
append
(
os
.
path
.
join
(
self
.
_img_root
,
l
[
0
]))
self
.
labels
.
append
(
int
(
l
[
1
]))
else
:
label_path
=
os
.
path
.
join
(
self
.
_label_root
,
l
[
0
].
split
(
'.'
)[
0
]
+
'.txt'
)
assert
os
.
path
.
exists
(
label_path
)
bbox
=
open
(
label_path
).
readlines
()[
-
1
].
strip
().
split
()
bbox
=
[
int
(
x
)
for
x
in
bbox
]
self
.
images
.
append
(
os
.
path
.
join
(
self
.
_img_root
,
l
[
0
]))
self
.
labels
.
append
(
int
(
l
[
1
]))
self
.
bboxes
.
append
(
bbox
)
assert
os
.
path
.
exists
(
self
.
images
[
-
1
])
def
__getitem__
(
self
,
idx
):
img
=
cv2
.
imread
(
self
.
images
[
idx
])
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2RGB
)
if
self
.
_bbox_crop
:
bbox
=
self
.
bboxes
[
idx
]
img
=
img
[
bbox
[
1
]:
bbox
[
3
],
bbox
[
0
]:
bbox
[
2
],
:]
if
self
.
_transform_ops
:
img
=
transform
(
img
,
self
.
_transform_ops
)
img
=
img
.
transpose
((
2
,
0
,
1
))
return
(
img
,
self
.
labels
[
idx
])
def
__len__
(
self
):
return
len
(
self
.
images
)
@
property
def
class_num
(
self
):
return
len
(
set
(
self
.
labels
))
class
VeriWild
(
Dataset
):
def
__init__
(
self
,
image_root
,
cls_label_path
,
transform_ops
=
None
,
):
self
.
_img_root
=
image_root
self
.
_cls_path
=
cls_label_path
if
transform_ops
:
self
.
_transform_ops
=
create_operators
(
transform_ops
)
self
.
_dtype
=
paddle
.
get_default_dtype
()
self
.
_load_anno
()
def
_load_anno
(
self
):
assert
os
.
path
.
exists
(
self
.
_cls_path
)
assert
os
.
path
.
exists
(
self
.
_img_root
)
self
.
images
=
[]
self
.
labels
=
[]
self
.
cameras
=
[]
with
open
(
self
.
_cls_path
)
as
fd
:
lines
=
fd
.
readlines
()
for
l
in
lines
:
l
=
l
.
strip
().
split
()
self
.
images
.
append
(
os
.
path
.
join
(
self
.
_img_root
,
l
[
0
]))
self
.
labels
.
append
(
int
(
l
[
1
]))
self
.
cameras
.
append
(
int
(
l
[
2
]))
assert
os
.
path
.
exists
(
self
.
images
[
-
1
])
def
__getitem__
(
self
,
idx
):
try
:
img
=
cv2
.
imread
(
self
.
images
[
idx
])
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2RGB
)
if
self
.
_transform_ops
:
img
=
transform
(
img
,
self
.
_transform_ops
)
img
=
img
.
transpose
((
2
,
0
,
1
))
return
(
img
,
self
.
labels
[
idx
],
self
.
cameras
[
idx
])
except
Exception
as
ex
:
logger
.
error
(
"Exception occured when parse line: {} with msg: {}"
.
format
(
self
.
images
[
idx
],
ex
))
rnd_idx
=
np
.
random
.
randint
(
self
.
__len__
())
return
self
.
__getitem__
(
rnd_idx
)
def
__len__
(
self
):
return
len
(
self
.
images
)
@
property
def
class_num
(
self
):
return
len
(
set
(
self
.
labels
))
ppcls/data/preprocess/ops/operators.py
浏览文件 @
96d1feb6
...
...
@@ -29,11 +29,13 @@ from PIL import Image
from
.autoaugment
import
ImageNetPolicy
from
.functional
import
augmentations
class
OperatorParamError
(
ValueError
):
""" OperatorParamError
"""
pass
class
DecodeImage
(
object
):
""" decode image """
...
...
@@ -235,7 +237,12 @@ class AugMix(object):
""" Perform AugMix augmentation and compute mixture.
"""
def
__init__
(
self
,
prob
=
0.5
,
aug_prob_coeff
=
0.1
,
mixture_width
=
3
,
mixture_depth
=
1
,
aug_severity
=
1
):
def
__init__
(
self
,
prob
=
0.5
,
aug_prob_coeff
=
0.1
,
mixture_width
=
3
,
mixture_depth
=
1
,
aug_severity
=
1
):
"""
Args:
prob: Probability of taking augmix
...
...
@@ -264,14 +271,16 @@ class AugMix(object):
ws
=
np
.
float32
(
np
.
random
.
dirichlet
([
self
.
aug_prob_coeff
]
*
self
.
mixture_width
))
m
=
np
.
float32
(
np
.
random
.
beta
(
self
.
aug_prob_coeff
,
self
.
aug_prob_coeff
))
m
=
np
.
float32
(
np
.
random
.
beta
(
self
.
aug_prob_coeff
,
self
.
aug_prob_coeff
))
# image = Image.fromarray(image)
mix
=
np
.
zeros
([
image
.
shape
[
1
],
image
.
shape
[
0
],
3
])
for
i
in
range
(
self
.
mixture_width
):
image_aug
=
image
.
copy
()
image_aug
=
Image
.
fromarray
(
image_aug
)
depth
=
self
.
mixture_depth
if
self
.
mixture_depth
>
0
else
np
.
random
.
randint
(
1
,
4
)
depth
=
self
.
mixture_depth
if
self
.
mixture_depth
>
0
else
np
.
random
.
randint
(
1
,
4
)
for
_
in
range
(
depth
):
op
=
np
.
random
.
choice
(
self
.
augmentations
)
image_aug
=
op
(
image_aug
,
self
.
aug_severity
)
...
...
ppcls/engine/trainer.py
浏览文件 @
96d1feb6
...
...
@@ -30,7 +30,7 @@ from ppcls.utils.misc import AverageMeter
from
ppcls.utils
import
logger
from
ppcls.data
import
build_dataloader
from
ppcls.arch
import
build_model
from
ppcls.
arch.loss_metric
s
import
build_loss
from
ppcls.
losse
s
import
build_loss
from
ppcls.arch.loss_metrics
import
build_metrics
from
ppcls.optimizer
import
build_optimizer
from
ppcls.utils.save_load
import
load_dygraph_pretrain
...
...
@@ -55,6 +55,14 @@ class Trainer(object):
"distributed"
]
=
paddle
.
distributed
.
get_world_size
()
!=
1
if
self
.
config
[
"Global"
][
"distributed"
]:
dist
.
init_parallel_env
()
if
"Head"
in
self
.
config
[
"Arch"
]:
self
.
config
[
"Arch"
][
"Head"
][
"class_num"
]
=
self
.
config
[
"Global"
][
"class_num"
]
self
.
is_rec
=
True
else
:
self
.
is_rec
=
False
self
.
model
=
build_model
(
self
.
config
[
"Arch"
])
if
self
.
config
[
"Global"
][
"pretrained_model"
]
is
not
None
:
...
...
@@ -143,7 +151,10 @@ class Trainer(object):
.
reshape
([
-
1
,
1
]))
global_step
+=
1
# image input
out
=
self
.
model
(
batch
[
0
])
if
not
self
.
is_rec
:
out
=
self
.
model
(
batch
[
0
])
else
:
out
=
self
.
model
(
batch
[
0
],
batch
[
1
])
# calc loss
loss_dict
=
loss_func
(
out
,
batch
[
-
1
])
for
key
in
loss_dict
:
...
...
@@ -233,7 +244,10 @@ class Trainer(object):
batch
[
0
]
=
paddle
.
to_tensor
(
batch
[
0
]).
astype
(
"float32"
)
batch
[
1
]
=
paddle
.
to_tensor
(
batch
[
1
]).
reshape
([
-
1
,
1
])
# image input
out
=
self
.
model
(
batch
[
0
])
if
self
.
is_rec
:
out
=
self
.
model
(
batch
[
0
],
batch
[
1
])
else
:
out
=
self
.
model
(
batch
[
0
])
# calc build
if
loss_func
is
not
None
:
loss_dict
=
loss_func
(
out
,
batch
[
-
1
])
...
...
ppcls/losses/__init__.py
浏览文件 @
96d1feb6
import
copy
import
paddle
import
paddle.nn
as
nn
from
ppcls.utils
import
logger
from
.celoss
import
CELoss
from
.triplet
import
TripletLoss
,
TripletLossV2
from
.msmloss
import
MSMLoss
from
.centerloss
import
CenterLoss
from
.emlloss
import
EmlLoss
from
.npairsloss
import
NpairsLoss
from
.msmloss
import
MSMLoss
from
.npairsloss
import
NpairsLoss
from
.trihardloss
import
TriHardLoss
from
.centerloss
import
CenterLoss
from
.triplet
import
TripletLoss
,
TripletLossV2
class
CombinedLoss
(
nn
.
Layer
):
def
__init__
(
self
,
config_list
):
...
...
@@ -39,7 +41,8 @@ class CombinedLoss(nn.Layer):
loss_dict
[
"loss"
]
=
paddle
.
add_n
(
list
(
loss_dict
.
values
()))
return
loss_dict
def
build_loss
(
config
):
module_class
=
CombinedLoss
(
co
nfig
)
module_class
=
CombinedLoss
(
co
py
.
deepcopy
(
config
)
)
logger
.
info
(
"build loss {} success."
.
format
(
module_class
))
return
module_class
ppcls/losses/celoss.py
浏览文件 @
96d1feb6
...
...
@@ -22,6 +22,7 @@ class Loss(object):
"""
Loss
"""
def
__init__
(
self
,
class_dim
=
1000
,
epsilon
=
None
):
assert
class_dim
>
1
,
"class_dim=%d is not larger than 1"
%
(
class_dim
)
self
.
_class_dim
=
class_dim
...
...
@@ -35,22 +36,26 @@ class Loss(object):
#do label_smoothing
def
_labelsmoothing
(
self
,
target
):
if
target
.
shape
[
-
1
]
!=
self
.
_class_dim
:
one_hot_target
=
F
.
one_hot
(
target
,
self
.
_class_dim
)
#do ont hot(23,34,46)-> 3 * _class_dim
one_hot_target
=
F
.
one_hot
(
target
,
self
.
_class_dim
)
#do ont hot(23,34,46)-> 3 * _class_dim
else
:
one_hot_target
=
target
#do label_smooth
soft_target
=
F
.
label_smooth
(
one_hot_target
,
epsilon
=
self
.
_epsilon
)
#(1 - epsilon) * input + eposilon / K.
soft_target
=
F
.
label_smooth
(
one_hot_target
,
epsilon
=
self
.
_epsilon
)
#(1 - epsilon) * input + eposilon / K.
soft_target
=
paddle
.
reshape
(
soft_target
,
shape
=
[
-
1
,
self
.
_class_dim
])
return
soft_target
def
_crossentropy
(
self
,
input
,
target
,
use_pure_fp16
=
False
):
if
self
.
_label_smoothing
:
target
=
self
.
_labelsmoothing
(
target
)
input
=
-
F
.
log_softmax
(
input
,
axis
=-
1
)
#softmax and do log
input
=
-
F
.
log_softmax
(
input
,
axis
=-
1
)
#softmax and do log
cost
=
paddle
.
sum
(
target
*
input
,
axis
=-
1
)
#sum
else
:
cost
=
F
.
cross_entropy
(
input
=
input
,
label
=
target
)
cost
=
F
.
cross_entropy
(
input
=
input
,
label
=
target
)
if
use_pure_fp16
:
avg_cost
=
paddle
.
sum
(
cost
)
...
...
@@ -64,9 +69,10 @@ class Loss(object):
(
target
+
eps
)
/
(
input
+
eps
))
*
self
.
_class_dim
return
cost
def
_jsdiv
(
self
,
input
,
target
):
#so the input and target is the fc output; no softmax
def
_jsdiv
(
self
,
input
,
target
):
#so the input and target is the fc output; no softmax
input
=
F
.
softmax
(
input
)
target
=
F
.
softmax
(
target
)
target
=
F
.
softmax
(
target
)
#two distribution
cost
=
self
.
_kldiv
(
input
,
target
)
+
self
.
_kldiv
(
target
,
input
)
...
...
@@ -87,14 +93,19 @@ class CELoss(Loss):
super
(
CELoss
,
self
).
__init__
(
class_dim
,
epsilon
)
def
__call__
(
self
,
input
,
target
,
use_pure_fp16
=
False
):
logits
=
input
[
"logits"
]
if
type
(
input
)
is
dict
:
logits
=
input
[
"logits"
]
else
:
logits
=
input
cost
=
self
.
_crossentropy
(
logits
,
target
,
use_pure_fp16
)
return
{
"CELoss"
:
cost
}
class
JSDivLoss
(
Loss
):
"""
JSDiv loss
"""
def
__init__
(
self
,
class_dim
=
1000
,
epsilon
=
None
):
super
(
JSDivLoss
,
self
).
__init__
(
class_dim
,
epsilon
)
...
...
@@ -112,4 +123,3 @@ class KLDivLoss(paddle.nn.Layer):
p
=
paddle
.
nn
.
functional
.
softmax
(
p
)
q
=
paddle
.
nn
.
functional
.
softmax
(
q
)
return
-
(
p
*
paddle
.
log
(
q
+
1e-8
)).
sum
(
1
).
mean
()
ppcls/losses/triplet.py
浏览文件 @
96d1feb6
...
...
@@ -5,17 +5,20 @@ from __future__ import print_function
import
paddle
import
paddle.nn
as
nn
class
TripletLossV2
(
nn
.
Layer
):
"""Triplet loss with hard positive/negative mining.
Args:
margin (float): margin for triplet.
"""
def
__init__
(
self
,
margin
=
0.5
):
def
__init__
(
self
,
margin
=
0.5
,
normalize_feature
=
True
):
super
(
TripletLossV2
,
self
).
__init__
()
self
.
margin
=
margin
self
.
ranking_loss
=
paddle
.
nn
.
loss
.
MarginRankingLoss
(
margin
=
margin
)
self
.
normalize_feature
=
normalize_feature
def
forward
(
self
,
input
,
target
,
normalize_feature
=
True
):
def
forward
(
self
,
input
,
target
):
"""
Args:
inputs: feature matrix with shape (batch_size, feat_dim)
...
...
@@ -23,28 +26,25 @@ class TripletLossV2(nn.Layer):
"""
inputs
=
input
[
"features"
]
if
normalize_feature
:
if
self
.
normalize_feature
:
inputs
=
1.
*
inputs
/
(
paddle
.
expand_as
(
paddle
.
norm
(
inputs
,
p
=
2
,
axis
=-
1
,
keepdim
=
True
),
inputs
)
+
1e-12
)
paddle
.
norm
(
inputs
,
p
=
2
,
axis
=-
1
,
keepdim
=
True
),
inputs
)
+
1e-12
)
bs
=
inputs
.
shape
[
0
]
# compute distance
dist
=
paddle
.
pow
(
inputs
,
2
).
sum
(
axis
=
1
,
keepdim
=
True
).
expand
([
bs
,
bs
])
dist
=
dist
+
dist
.
t
()
dist
=
paddle
.
addmm
(
input
=
dist
,
x
=
inputs
,
y
=
inputs
.
t
(),
alpha
=-
2.0
,
beta
=
1.0
)
dist
=
paddle
.
addmm
(
input
=
dist
,
x
=
inputs
,
y
=
inputs
.
t
(),
alpha
=-
2.0
,
beta
=
1.0
)
dist
=
paddle
.
clip
(
dist
,
min
=
1e-12
).
sqrt
()
# hard negative mining
is_pos
=
paddle
.
expand
(
target
,
(
bs
,
bs
)).
equal
(
paddle
.
expand
(
target
,
(
bs
,
bs
)).
t
())
is_neg
=
paddle
.
expand
(
target
,
(
bs
,
bs
)).
not_equal
(
paddle
.
expand
(
target
,
(
bs
,
bs
)).
t
())
is_pos
=
paddle
.
expand
(
target
,
(
bs
,
bs
)).
equal
(
paddle
.
expand
(
target
,
(
bs
,
bs
)).
t
())
is_neg
=
paddle
.
expand
(
target
,
(
bs
,
bs
)).
not_equal
(
paddle
.
expand
(
target
,
(
bs
,
bs
)).
t
())
# `dist_ap` means distance(anchor, positive)
## both `dist_ap` and `relative_p_inds` with shape [N, 1]
...
...
@@ -56,14 +56,14 @@ class TripletLossV2(nn.Layer):
dist_an, relative_n_inds = paddle.min(
paddle.reshape(dist[is_neg], (bs, -1)), axis=1, keepdim=True)
'''
dist_ap
=
paddle
.
max
(
paddle
.
reshape
(
paddle
.
masked_select
(
dist
,
is_pos
),
(
bs
,
-
1
)),
dist_ap
=
paddle
.
max
(
paddle
.
reshape
(
paddle
.
masked_select
(
dist
,
is_pos
),
(
bs
,
-
1
)),
axis
=
1
,
keepdim
=
True
)
# `dist_an` means distance(anchor, negative)
# both `dist_an` and `relative_n_inds` with shape [N, 1]
dist_an
=
paddle
.
min
(
paddle
.
reshape
(
paddle
.
masked_select
(
dist
,
is_neg
),
(
bs
,
-
1
)),
dist_an
=
paddle
.
min
(
paddle
.
reshape
(
paddle
.
masked_select
(
dist
,
is_neg
),
(
bs
,
-
1
)),
axis
=
1
,
keepdim
=
True
)
# shape [N]
...
...
@@ -84,6 +84,7 @@ class TripletLoss(nn.Layer):
Args:
margin (float): margin for triplet.
"""
def
__init__
(
self
,
margin
=
1.0
):
super
(
TripletLoss
,
self
).
__init__
()
self
.
margin
=
margin
...
...
@@ -101,15 +102,12 @@ class TripletLoss(nn.Layer):
# Compute pairwise distance, replace by the official when merged
dist
=
paddle
.
pow
(
inputs
,
2
).
sum
(
axis
=
1
,
keepdim
=
True
).
expand
([
bs
,
bs
])
dist
=
dist
+
dist
.
t
()
dist
=
paddle
.
addmm
(
input
=
dist
,
x
=
inputs
,
y
=
inputs
.
t
(),
alpha
=-
2.0
,
beta
=
1.0
)
dist
=
paddle
.
addmm
(
input
=
dist
,
x
=
inputs
,
y
=
inputs
.
t
(),
alpha
=-
2.0
,
beta
=
1.0
)
dist
=
paddle
.
clip
(
dist
,
min
=
1e-12
).
sqrt
()
mask
=
paddle
.
equal
(
target
.
expand
([
bs
,
bs
]),
target
.
expand
([
bs
,
bs
]).
t
())
mask
=
paddle
.
equal
(
target
.
expand
([
bs
,
bs
]),
target
.
expand
([
bs
,
bs
]).
t
())
mask_numpy_idx
=
mask
.
numpy
()
dist_ap
,
dist_an
=
[],
[]
for
i
in
range
(
bs
):
...
...
@@ -118,18 +116,16 @@ class TripletLoss(nn.Layer):
# dist_ap.append(dist_ap_i)
dist_ap
.
append
(
max
([
dist
[
i
][
j
]
if
mask_numpy_idx
[
i
][
j
]
==
True
else
float
(
"-inf"
)
for
j
in
range
(
bs
)
dist
[
i
][
j
]
if
mask_numpy_idx
[
i
][
j
]
==
True
else
float
(
"-inf"
)
for
j
in
range
(
bs
)
]).
unsqueeze
(
0
))
# dist_an_i = paddle.to_tensor(dist[i].numpy()[mask_numpy_idx[i] == False].min(), dtype='float64').unsqueeze(0)
# dist_an_i.stop_gradient = False
# dist_an.append(dist_an_i)
dist_an
.
append
(
min
([
dist
[
i
][
k
]
if
mask_numpy_idx
[
i
][
k
]
==
False
else
float
(
"inf"
)
for
k
in
range
(
bs
)
dist
[
i
][
k
]
if
mask_numpy_idx
[
i
][
k
]
==
False
else
float
(
"inf"
)
for
k
in
range
(
bs
)
]).
unsqueeze
(
0
))
dist_ap
=
paddle
.
concat
(
dist_ap
,
axis
=
0
)
...
...
@@ -139,4 +135,3 @@ class TripletLoss(nn.Layer):
y
=
paddle
.
ones_like
(
dist_an
)
loss
=
self
.
ranking_loss
(
dist_an
,
dist_ap
,
y
)
return
{
"TripletLoss"
:
loss
}
ppcls/optimizer/__init__.py
浏览文件 @
96d1feb6
...
...
@@ -31,7 +31,11 @@ def build_lr_scheduler(lr_config, epochs, step_each_epoch):
lr_config
.
update
({
'epochs'
:
epochs
,
'step_each_epoch'
:
step_each_epoch
})
if
'name'
in
lr_config
:
lr_name
=
lr_config
.
pop
(
'name'
)
lr
=
getattr
(
learning_rate
,
lr_name
)(
**
lr_config
)()
lr
=
getattr
(
learning_rate
,
lr_name
)(
**
lr_config
)
if
isinstance
(
lr
,
paddle
.
optimizer
.
lr
.
LRScheduler
):
return
lr
else
:
return
lr
()
else
:
lr
=
lr_config
[
'learning_rate'
]
return
lr
...
...
ppcls/optimizer/learning_rate.py
浏览文件 @
96d1feb6
...
...
@@ -11,11 +11,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
unicode_literals
from
__future__
import
(
absolute_import
,
division
,
print_function
,
unicode_literals
)
from
paddle.optimizer
import
lr
from
paddle.optimizer.lr
import
LRScheduler
class
Linear
(
object
):
...
...
@@ -181,3 +181,104 @@ class Piecewise(object):
end_lr
=
self
.
values
[
0
],
last_epoch
=
self
.
last_epoch
)
return
learning_rate
class
MultiStepDecay
(
LRScheduler
):
"""
Update the learning rate by ``gamma`` once ``epoch`` reaches one of the milestones.
The algorithm can be described as the code below.
.. code-block:: text
learning_rate = 0.5
milestones = [30, 50]
gamma = 0.1
if epoch < 30:
learning_rate = 0.5
elif epoch < 50:
learning_rate = 0.05
else:
learning_rate = 0.005
Args:
learning_rate (float): The initial learning rate. It is a python float number.
milestones (tuple|list): List or tuple of each boundaries. Must be increasing.
gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
It should be less than 1.0. Default: 0.1.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
Returns:
``MultiStepDecay`` instance to schedule learning rate.
Examples:
.. code-block:: python
import paddle
import numpy as np
# train on default dynamic graph mode
linear = paddle.nn.Linear(10, 10)
scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
for epoch in range(20):
for batch_id in range(5):
x = paddle.uniform([10, 10])
out = linear(x)
loss = paddle.mean(out)
loss.backward()
sgd.step()
sgd.clear_gradients()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
# train on static graph mode
paddle.enable_static()
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[None, 4, 5])
y = paddle.static.data(name='y', shape=[None, 4, 5])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler)
sgd.minimize(loss)
exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
for batch_id in range(5):
out = exe.run(
main_prog,
feed={
'x': np.random.randn(3, 4, 5).astype('float32'),
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=loss.name)
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
"""
def
__init__
(
self
,
learning_rate
,
milestones
,
epochs
,
step_each_epoch
,
gamma
=
0.1
,
last_epoch
=-
1
,
verbose
=
False
):
if
not
isinstance
(
milestones
,
(
tuple
,
list
)):
raise
TypeError
(
"The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s."
%
type
(
milestones
))
if
not
all
([
milestones
[
i
]
<
milestones
[
i
+
1
]
for
i
in
range
(
len
(
milestones
)
-
1
)
]):
raise
ValueError
(
'The elements of milestones must be incremented'
)
if
gamma
>=
1.0
:
raise
ValueError
(
'gamma should be < 1.0.'
)
self
.
milestones
=
[
x
*
step_each_epoch
for
x
in
milestones
]
self
.
gamma
=
gamma
super
(
MultiStepDecay
,
self
).
__init__
(
learning_rate
,
last_epoch
,
verbose
)
def
get_lr
(
self
):
for
i
in
range
(
len
(
self
.
milestones
)):
if
self
.
last_epoch
<
self
.
milestones
[
i
]:
return
self
.
base_lr
*
(
self
.
gamma
**
i
)
return
self
.
base_lr
*
(
self
.
gamma
**
len
(
self
.
milestones
))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录