* 改进 loss 计算方法。分类 loss 计算最常用的方法就是 cross entropy loss ,我们经过实验发现,在使用 soft label 进行训练时,相对于 cross entropy loss , KL div loss 对模型性能提升几乎无帮助,但是使用具有对称特性的 JS div loss 时,在多个蒸馏任务上相比 cross entropy loss 均有 0.2% 左右的收益(`76.0%->76.2%`), SSLD 中也基于 JS div loss 展开实验。
* 改进 loss 计算方法。分类 loss 计算最常用的方法就是 cross entropy loss,我们经过实验发现,在使用 soft label 进行训练时,相对于 cross entropy loss,KL div loss 对模型性能提升几乎无帮助,但是使用具有对称特性的 JS div loss 时,在多个蒸馏任务上相比 cross entropy loss 均有 0.2% 左右的收益(`76.0%->76.2%`),SSLD 中也基于 JS div loss 展开实验。
Park 等人提出了 RKD [10],基于关系的知识蒸馏算法,RKD 中进一步考虑个体输出之间的关系,使用 2 种损失函数,二阶的距离损失(distance-wise)和三阶的角度损失(angle-wise)
本论文提出的算法关系知识蒸馏(RKD)迁移教师模型得到的输出结果间的结构化关系给学生模型,不同于之前的只关注个体输出结果,RKD 算法使用两种损失函数:二阶的距离损失 (distance-wise) 和三阶的角度损失 (angle-wise)。在最终计算蒸馏损失函数的时候,同时考虑KD loss 和 RKD loss。最终精度优于单独使用 KD loss 蒸馏得到的模型精度。
本论文提出的算法关系知识蒸馏(RKD)迁移教师模型得到的输出结果间的结构化关系给学生模型,不同于之前的只关注个体输出结果,RKD 算法使用两种损失函数:二阶的距离损失(distance-wise)和三阶的角度损失(angle-wise)。在最终计算蒸馏损失函数的时候,同时考虑 KD loss 和 RKD loss。最终精度优于单独使用 KD loss 蒸馏得到的模型精度。
* A:(1)可以使用更大的预测尺度,比如说训练的时候使用的是224,那么预测的时候可以考虑使用288或者320,这会直接带来0.5%左右的精度提升。(2)可以使用测试时增广的策略(Test Time Augmentation, TTA),将测试集通过旋转、翻转、颜色变换等策略,创建多个副本,并分别预测,最后将所有的预测结果进行融合,这可以大大提升预测结果的精度和鲁棒性。(3)当然,也可以使用多模型融合的策略,将多个模型针对相同图片的预测结果进行融合。
* A:(1)可以使用更大的预测尺度,比如说训练的时候使用的是224,那么预测的时候可以考虑使用288或者320,这会直接带来0.5%左右的精度提升。(2)可以使用测试时增广的策略(Test Time Augmentation, TTA),将测试集通过旋转、翻转、颜色变换等策略,创建多个副本,并分别预测,最后将所有的预测结果进行融合,这可以大大提升预测结果的精度和鲁棒性。(3)当然,也可以使用多模型融合的策略,将多个模型针对相同图片的预测结果进行融合。
贝叶斯搜索,即贝叶斯优化,在搜索空间中随机选取超参数点,采用高斯过程,即根据上一个超参数点的结果,更新当前的先验信息,计算前面 n 个超参数点的后验概率分布,得到搜索空间中每一个超参数点的期望均值和方差,其中期望均值越大表示接近最优指标的可能性越大,方差越大表示不确定性越大。通常将选择期望均值大的超参数点称为`exporitation`,选择方差大的超参数点称为`exploration`。在贝叶斯优化中通过定义`acquisition function`权衡期望均值和方差。贝叶斯搜索认为当前选择的超参数点是处于最大值可能出现的位置。
贝叶斯搜索,即贝叶斯优化,在搜索空间中随机选取超参数点,采用高斯过程,即根据上一个超参数点的结果,更新当前的先验信息,计算前面 n 个超参数点的后验概率分布,得到搜索空间中每一个超参数点的期望均值和方差,其中期望均值越大表示接近最优指标的可能性越大,方差越大表示不确定性越大。通常将选择期望均值大的超参数点称为`exporitation`,选择方差大的超参数点称为 `exploration`。在贝叶斯优化中通过定义 `acquisition function`权衡期望均值和方差。贝叶斯搜索认为当前选择的超参数点是处于最大值可能出现的位置。
4. 如果希望在 windows 环境下安装 wget,可以参考:[链接](https://www.cnblogs.com/jeshy/p/10518062.html);如果希望在 windows 环境中安装 tar 命令,可以参考:[链接](https://www.cnblogs.com/chooperman/p/14190107.html)。
4. 如果希望在 windows 环境下安装 wget,可以参考:[链接](https://www.cnblogs.com/jeshy/p/10518062.html);如果希望在 windows 环境中安装 tar 命令,可以参考:[链接](https://www.cnblogs.com/chooperman/p/14190107.html)。