提交 927a7887 编写于 作者: littletomatodonkey's avatar littletomatodonkey

fix distillation load

上级 4f5e494a
......@@ -48,7 +48,7 @@ def _mkdir_if_not_exist(path):
def load_dygraph_pretrain(
model,
path=None,
load_static_weights=False, ):
load_static_weights=False):
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
raise ValueError("Model pretrain path {} does not "
"exists.".format(path))
......@@ -72,6 +72,26 @@ def load_dygraph_pretrain(
return
def load_distillation_model(model, pretrained_model, load_static_weights):
logger.info("In distillation mode, teacher model will be "
"loaded firstly before student model.")
assert len(pretrained_model) == 2, "pretrained_model length should be 2 but got {}".format(len(pretrained_model))
assert len(load_static_weights) == 2, "load_static_weights length should be 2 but got {}".format(len(load_static_weights))
load_dygraph_pretrain(
model.teacher,
path=pretrained_model[0],
load_static_weights=load_static_weights[0])
logger.info(
logger.coloring("Finish initing teacher model from {}".format(
pretrained_model), "HEADER"))
load_dygraph_pretrain(
model.student,
path=pretrained_model[1],
load_static_weights=load_static_weights[1])
logger.info(
logger.coloring("Finish initing student model from {}".format(
pretrained_model), "HEADER"))
def init_model(config, net, optimizer=None):
"""
load model from checkpoint or pretrained_model
......@@ -94,18 +114,13 @@ def init_model(config, net, optimizer=None):
load_static_weights = config.get('load_static_weights', False)
use_distillation = config.get('use_distillation', False)
if pretrained_model:
if not isinstance(pretrained_model, list):
pretrained_model = [pretrained_model]
if not isinstance(load_static_weights, list):
load_static_weights = [load_static_weights] * len(pretrained_model)
for idx, pretrained in enumerate(pretrained_model):
load_static = load_static_weights[idx]
model = net
if use_distillation and not load_static:
model = net.teacher
if isinstance(pretrained_model, list): # load distillation pretrained model
if not isinstance(load_static_weights, list):
load_static_weights = [load_static_weights] * len(pretrained_model)
load_distillation_model(net, pretrained_model, load_static_weights)
else: # common load
load_dygraph_pretrain(
model, path=pretrained, load_static_weights=load_static)
net, path=pretrained_model, load_static_weights=load_static_weights)
logger.info(
logger.coloring("Finish initing model from {}".format(
pretrained_model), "HEADER"))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册