Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
920a44b0
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
116
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
920a44b0
编写于
5月 24, 2021
作者:
W
weishengyu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
move files
上级
f6da3bd6
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
23 addition
and
64 deletion
+23
-64
dataset/flowers102/generate_flowers102_list.py
dataset/flowers102/generate_flowers102_list.py
+0
-38
deploy/slim/quant/export_model.py
deploy/slim/quant/export_model.py
+2
-2
docs/zh_CN/faq_series/faq_2020_s1.md
docs/zh_CN/faq_series/faq_2020_s1.md
+1
-1
docs/zh_CN/feature_visiualization/get_started.md
docs/zh_CN/feature_visiualization/get_started.md
+1
-1
tools/export_model.py
tools/export_model.py
+2
-2
tools/export_serving_model.py
tools/export_serving_model.py
+2
-2
tools/infer/infer.py
tools/infer/infer.py
+2
-2
tools/program.py
tools/program.py
+7
-9
tools/static/program.py
tools/static/program.py
+6
-7
未找到文件。
dataset/flowers102/generate_flowers102_list.py
已删除
100644 → 0
浏览文件 @
f6da3bd6
"""
.mat files data format
imagelabel.mat
jpg_name 1 2 3 ...
label 32 12 66 ...
setid.mat
jpg_name(10 records in a class) 24 6 100 65 32 ...
label 4 ...
"""
"""
Usage:
python generate_flower_list.py prefix_folder mode
python generate_flower_list.py jpg train > train_list.txt
python generate_flower_list.py jpg valid > val_list.txt
"""
import
scipy.io
import
numpy
as
np
import
os
import
sys
data_path
=
sys
.
argv
[
1
]
imagelabels_path
=
'./imagelabels.mat'
setid_path
=
'./setid.mat'
labels
=
scipy
.
io
.
loadmat
(
imagelabels_path
)
labels
=
np
.
array
(
labels
[
'labels'
][
0
])
setid
=
scipy
.
io
.
loadmat
(
setid_path
)
d
=
{}
d
[
'train'
]
=
np
.
array
(
setid
[
'trnid'
][
0
])
d
[
'valid'
]
=
np
.
array
(
setid
[
'valid'
][
0
])
d
[
'test'
]
=
np
.
array
(
setid
[
'tstid'
][
0
])
for
id
in
d
[
sys
.
argv
[
2
]]:
message
=
str
(
data_path
)
+
"/image_"
+
str
(
id
).
zfill
(
5
)
+
".jpg "
+
str
(
labels
[
id
-
1
]
-
1
)
print
(
message
)
deploy/slim/quant/export_model.py
浏览文件 @
920a44b0
...
...
@@ -21,7 +21,7 @@ sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'..'
,
'..'
,
'..'
,
'tools'
)))
from
ppcls.
modeling
import
architectures
from
ppcls.
arch
import
backbone
from
ppcls.utils.save_load
import
load_dygraph_pretrain
import
paddle
import
paddle.nn.functional
as
F
...
...
@@ -63,7 +63,7 @@ class Net(paddle.nn.Layer):
def
main
():
args
=
parse_args
()
net
=
architectures
.
__dict__
[
args
.
model
]
net
=
backbone
.
__dict__
[
args
.
model
]
model
=
Net
(
net
,
args
.
class_dim
,
args
.
model
)
# get QAT model
...
...
docs/zh_CN/faq_series/faq_2020_s1.md
浏览文件 @
920a44b0
...
...
@@ -136,7 +136,7 @@ ResNet系列模型中,相比于其他模型,ResNet_vd模型在预测速度
**A**
:
*
可以使用自动混合精度进行训练,这在精度几乎无损的情况下,可以有比较明显的速度收益,以ResNet50为例,PaddleClas中使用自动混合精度训练的配置文件可以参考:
[
ResNet50_fp16.yml
](
../../../configs/ResNet/ResNet50_fp16.yml
)
,主要就是需要在标准的配置文件中添加以下几行
*
可以使用自动混合精度进行训练,这在精度几乎无损的情况下,可以有比较明显的速度收益,以ResNet50为例,PaddleClas中使用自动混合精度训练的配置文件可以参考:
[
ResNet50_fp16.yml
](
../../../
ppcls/
configs/ResNet/ResNet50_fp16.yml
)
,主要就是需要在标准的配置文件中添加以下几行
```
use_fp16: True
...
...
docs/zh_CN/feature_visiualization/get_started.md
浏览文件 @
920a44b0
...
...
@@ -6,7 +6,7 @@
## 二、准备工作
首先需要选定研究的模型,本文设定ResNet50作为研究模型,将resnet.py从
[
模型库
](
../../../ppcls/
modeling
/architecture/
)
拷贝到当前目录下,并下载预训练模型
[
预训练模型
](
../../zh_CN/models/models_intro
)
, 复制resnet50的模型链接,使用下列命令下载并解压预训练模型。
首先需要选定研究的模型,本文设定ResNet50作为研究模型,将resnet.py从
[
模型库
](
../../../ppcls/
arch
/architecture/
)
拷贝到当前目录下,并下载预训练模型
[
预训练模型
](
../../zh_CN/models/models_intro
)
, 复制resnet50的模型链接,使用下列命令下载并解压预训练模型。
```
bash
wget The Link
for
Pretrained Model
...
...
tools/export_model.py
浏览文件 @
920a44b0
...
...
@@ -19,7 +19,7 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys
.
path
.
append
(
__dir__
)
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'..'
)))
from
ppcls.
modeling
import
architectures
from
ppcls.
arch
import
backbone
from
ppcls.utils.save_load
import
load_dygraph_pretrain
import
paddle
import
paddle.nn.functional
as
F
...
...
@@ -64,7 +64,7 @@ class Net(paddle.nn.Layer):
def
main
():
args
=
parse_args
()
net
=
architectures
.
__dict__
[
args
.
model
]
net
=
backbone
.
__dict__
[
args
.
model
]
model
=
Net
(
net
,
args
.
class_dim
,
args
.
model
)
load_dygraph_pretrain
(
model
.
pre_net
,
...
...
tools/export_serving_model.py
浏览文件 @
920a44b0
...
...
@@ -14,7 +14,7 @@
import
argparse
import
os
from
ppcls.
modeling
import
architectures
from
ppcls.
arch
import
backbone
import
paddle.fluid
as
fluid
import
paddle_serving_client.io
as
serving_io
...
...
@@ -49,7 +49,7 @@ def create_model(args, model, input, class_dim=1000):
def
main
():
args
=
parse_args
()
model
=
architectures
.
__dict__
[
args
.
model
]()
model
=
backbone
.
__dict__
[
args
.
model
]()
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
...
...
tools/infer/infer.py
浏览文件 @
920a44b0
...
...
@@ -26,7 +26,7 @@ sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
from
ppcls.utils.save_load
import
load_dygraph_pretrain
from
ppcls.utils
import
logger
from
ppcls.
modeling
import
architectures
from
ppcls.
arch
import
backbone
from
utils
import
parse_args
,
get_image_list
,
preprocess
,
postprocess
,
save_prelabel_results
...
...
@@ -36,7 +36,7 @@ def main():
place
=
paddle
.
set_device
(
'gpu'
if
args
.
use_gpu
else
'cpu'
)
multilabel
=
True
if
args
.
multilabel
else
False
net
=
architectures
.
__dict__
[
args
.
model
](
class_dim
=
args
.
class_num
)
net
=
backbone
.
__dict__
[
args
.
model
](
class_dim
=
args
.
class_num
)
load_dygraph_pretrain
(
net
,
args
.
pretrained_model
,
args
.
load_static_weights
)
image_list
=
get_image_list
(
args
.
image_file
)
batch_input_list
=
[]
...
...
tools/program.py
浏览文件 @
920a44b0
...
...
@@ -16,24 +16,22 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
time
import
datetime
from
collections
import
OrderedDict
import
paddle
from
paddle
import
to_tensor
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
ppcls.optimizer
import
LearningRateBuilder
from
ppcls.optimizer
import
OptimizerBuilder
from
ppcls.
modeling
import
architectures
from
ppcls.
modeling
.loss
import
MultiLabelLoss
from
ppcls.
modeling
.loss
import
CELoss
from
ppcls.
modeling
.loss
import
MixCELoss
from
ppcls.
modeling
.loss
import
JSDivLoss
from
ppcls.
modeling
.loss
import
GoogLeNetLoss
from
ppcls.
arch
import
backbone
from
ppcls.
arch
.loss
import
MultiLabelLoss
from
ppcls.
arch
.loss
import
CELoss
from
ppcls.
arch
.loss
import
MixCELoss
from
ppcls.
arch
.loss
import
JSDivLoss
from
ppcls.
arch
.loss
import
GoogLeNetLoss
from
ppcls.utils.misc
import
AverageMeter
from
ppcls.utils
import
logger
from
ppcls.utils
import
profiler
...
...
@@ -57,7 +55,7 @@ def create_model(architecture, classes_num):
"""
name
=
architecture
[
"name"
]
params
=
architecture
.
get
(
"params"
,
{})
return
architectures
.
__dict__
[
name
](
class_dim
=
classes_num
,
**
params
)
return
backbone
.
__dict__
[
name
](
class_dim
=
classes_num
,
**
params
)
def
create_loss
(
feeds
,
...
...
tools/static/program.py
浏览文件 @
920a44b0
...
...
@@ -16,7 +16,6 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
time
import
numpy
as
np
...
...
@@ -27,11 +26,11 @@ import paddle
import
paddle.nn.functional
as
F
from
ppcls.optimizer.learning_rate
import
LearningRateBuilder
from
ppcls.
modeling
import
architectures
from
ppcls.
modeling
.loss
import
CELoss
from
ppcls.
modeling
.loss
import
MixCELoss
from
ppcls.
modeling
.loss
import
JSDivLoss
from
ppcls.
modeling
.loss
import
GoogLeNetLoss
from
ppcls.
arch
import
backbone
from
ppcls.
arch
.loss
import
CELoss
from
ppcls.
arch
.loss
import
MixCELoss
from
ppcls.
arch
.loss
import
JSDivLoss
from
ppcls.
arch
.loss
import
GoogLeNetLoss
from
ppcls.utils.misc
import
AverageMeter
from
ppcls.utils
import
logger
,
profiler
...
...
@@ -95,7 +94,7 @@ def create_model(architecture, image, classes_num, config, is_train):
params
[
"input_image_channel"
]
=
input_image_channel
if
"is_test"
in
params
:
params
[
'is_test'
]
=
not
is_train
model
=
architectures
.
__dict__
[
name
](
class_dim
=
classes_num
,
**
params
)
model
=
backbone
.
__dict__
[
name
](
class_dim
=
classes_num
,
**
params
)
out
=
model
(
image
)
return
out
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录