未验证 提交 9176a01a 编写于 作者: C cuicheng01 提交者: GitHub

Merge pull request #1483 from RainFrost1/whole_chain

TIPC添加rec model的支持
......@@ -35,6 +35,27 @@ class RecPredictor(Predictor):
self.preprocess_ops = create_operators(config["RecPreProcess"][
"transform_ops"])
self.postprocess = build_postprocess(config["RecPostProcess"])
self.benchmark = config["Global"].get("benchmark", False)
if self.benchmark:
import auto_log
pid = os.getpid()
self.auto_logger = auto_log.AutoLogger(
model_name=config["Global"].get("model_name", "rec"),
model_precision='fp16'
if config["Global"]["use_fp16"] else 'fp32',
batch_size=config["Global"].get("batch_size", 1),
data_shape=[3, 224, 224],
save_path=config["Global"].get("save_log_path",
"./auto_log.log"),
inference_config=self.config,
pids=pid,
process_name=None,
gpu_ids=None,
time_keys=[
'preprocess_time', 'inference_time', 'postprocess_time'
],
warmup=2)
def predict(self, images, feature_normalize=True):
input_names = self.paddle_predictor.get_input_names()
......@@ -44,16 +65,22 @@ class RecPredictor(Predictor):
output_tensor = self.paddle_predictor.get_output_handle(output_names[
0])
if self.benchmark:
self.auto_logger.times.start()
if not isinstance(images, (list, )):
images = [images]
for idx in range(len(images)):
for ops in self.preprocess_ops:
images[idx] = ops(images[idx])
image = np.array(images)
if self.benchmark:
self.auto_logger.times.stamp()
input_tensor.copy_from_cpu(image)
self.paddle_predictor.run()
batch_output = output_tensor.copy_to_cpu()
if self.benchmark:
self.auto_logger.times.stamp()
if feature_normalize:
feas_norm = np.sqrt(
......@@ -62,6 +89,9 @@ class RecPredictor(Predictor):
if self.postprocess is not None:
batch_output = self.postprocess(batch_output)
if self.benchmark:
self.auto_logger.times.end(stamp=True)
return batch_output
......@@ -85,16 +115,19 @@ def main(config):
batch_names.append(img_name)
cnt += 1
if cnt % config["Global"]["batch_size"] == 0 or (idx + 1) == len(image_list):
if len(batch_imgs) == 0:
if cnt % config["Global"]["batch_size"] == 0 or (idx + 1
) == len(image_list):
if len(batch_imgs) == 0:
continue
batch_results = rec_predictor.predict(batch_imgs)
for number, result_dict in enumerate(batch_results):
filename = batch_names[number]
print("{}:\t{}".format(filename, result_dict))
batch_imgs = []
batch_names = []
if rec_predictor.benchmark:
rec_predictor.auto_logger.report()
return
......
===========================train_params===========================
model_name:GeneralRecognition_PPLCNet_x2_5
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
pretrained_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/general_PPLCNet_x2_5_pretrained_v1.0.pdparams
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_rec.py -c configs/inference_rec.yaml
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:True|False
-o Global.cpu_num_threads:1|6
-o Global.batch_size:1|16
-o Global.use_tensorrt:True|False
-o Global.use_fp16:True|False
-o Global.rec_inference_model_dir:../inference
-o Global.infer_imgs:../dataset/Aliproduct/demo_test/
-o Global.save_log_path:null
-o Global.benchmark:True
null:null
null:null
......@@ -37,6 +37,24 @@ model_name=$(func_parser_value "${lines[1]}")
model_url_value=$(func_parser_value "${lines[35]}")
model_url_key=$(func_parser_key "${lines[35]}")
if [[ $FILENAME == *GeneralRecognition* ]];then
cd dataset
rm -rf Aliproduct
rm -rf train_reg_all_data.txt
rm -rf demo_train
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/tipc_shitu_demo_data.tar
tar -xf tipc_shitu_demo_data.tar
ln -s tipc_shitu_demo_data Aliproduct
ln -s tipc_shitu_demo_data/demo_train.txt train_reg_all_data.txt
ln -s tipc_shitu_demo_data/demo_train demo_train
cd tipc_shitu_demo_data
ln -s demo_test.txt val_list.txt
cd ../../
eval "wget -nc $model_url_value"
mv general_PPLCNet_x2_5_pretrained_v1.0.pdparams GeneralRecognition_PPLCNet_x2_5_pretrained.pdparams
exit 0
fi
if [ ${MODE} = "lite_train_lite_infer" ] || [ ${MODE} = "lite_train_whole_infer" ];then
# pretrain lite train data
cd dataset
......
......@@ -291,8 +291,12 @@ else
export FLAGS_cudnn_deterministic=True
eval $cmd
status_check $? "${cmd}" "${status_log}"
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${$model_name}/${train_model_name}")
if [[ $FILENAME == *GeneralRecognition* ]]; then
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/RecModel/${train_model_name}")
else
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${model_name}/${train_model_name}")
fi
# save norm trained models to set pretrain for pact training and fpgm training
if [ ${trainer} = ${trainer_norm} ]; then
load_norm_train_model=${set_eval_pretrain}
......@@ -308,7 +312,11 @@ else
if [ ${run_export} != "null" ]; then
# run export model
save_infer_path="${save_log}"
set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${model_name}/${train_model_name}")
if [[ $FILENAME == *GeneralRecognition* ]]; then
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/RecModel/${train_model_name}")
else
set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${model_name}/${train_model_name}")
fi
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
eval $export_cmd
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册