未验证 提交 90418d79 编写于 作者: B Bin Lu 提交者: GitHub

Update __init__.py

上级 bb4c2c6d
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. import copy
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle import paddle
import paddle.nn as nn import paddle.nn as nn
import paddle.nn.functional as F
class CircleMargin(nn.Layer):
def __init__(self, embedding_size,
class_num,
margin,
scale):
super(CircleSoftmax, self).__init__()
self.scale = scale
self.margin = margin
self.embedding_size = embedding_size
self.class_num = class_num
weight_attr = paddle.ParamAttr(initializer = paddle.nn.initializer.XavierNormal()) from .celoss import CELoss
self.fc0 = paddle.nn.Linear(self.embedding_size, self.class_num, weight_attr=weight_attr)
from .triplet import TripletLoss, TripletLossV2
def forward(self, input, label): from .msmloss import MSMLoss
feat_norm = paddle.sqrt(paddle.sum(paddle.square(input), axis=1, keepdim=True)) from .emlloss import EmlLoss
input = paddle.divide(input, feat_norm) from .npairsloss import NpairsLoss
from .trihardloss import TriHardLoss
from .centerloss import CenterLoss
class CombinedLoss(nn.Layer):
def __init__(self, config_list):
super().__init__()
self.loss_func = []
self.loss_weight = []
assert isinstance(config_list, list), (
'operator config should be a list')
for config in config_list:
print(config)
assert isinstance(config,
dict) and len(config) == 1, "yaml format error"
name = list(config)[0]
param = config[name]
assert "weight" in param, "weight must be in param, but param just contains {}".format(
param.keys())
self.loss_weight.append(param.pop("weight"))
self.loss_func.append(eval(name)(**param))
weight = self.fc0.weight def __call__(self, input, batch):
weight_norm = paddle.sqrt(paddle.sum(paddle.square(weight), axis=0, keepdim=True)) loss_dict = {}
weight = paddle.divide(weight, weight_norm) for idx, loss_func in enumerate(self.loss_func):
loss = loss_func(input, batch)
logits = paddle.matmul(input, weight) weight = self.loss_weight[idx]
loss = {key: loss[key] * weight for key in loss}
loss_dict.update(loss)
loss_dict["loss"] = paddle.add_n(list(loss_dict.values()))
return loss_dict
alpha_p = paddle.clip(-logits.detach() + 1 + self.margin, min=0.) def build_loss(config):
alpha_n = paddle.clip(logits.detach() + self.margin, min=0.) module_class = CombinedLoss(config)
delta_p = 1 - self.margin logger.info("build loss {} success.".format(module_class))
delta_n = self.margin return module_class
index = paddle.fluid.layers.where(label != -1).reshape([-1])
m_hot = F.one_hot(label.reshape([-1]), num_classes=logits.shape[1])
logits_p = alpha_p * (logits - delta_p)
logits_n = alpha_n * (logits - delta_n)
pre_logits = logits_p * m_hot + logits_n * (1 - m_hot)
pre_logits = self.scale * pre_logits
return pre_logits
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册