提交 88ec1053 编写于 作者: G gaotingquan 提交者: cuicheng01

docs: fix link

上级 46962ebd
...@@ -137,7 +137,7 @@ print(next(result)) ...@@ -137,7 +137,7 @@ print(next(result))
### 3.1 Installation ### 3.1 Installation
Please refer to [Installation](../installation/install_paddleclas_en.md) to get the description about installation. Please refer to [Installation](../installation.md) to get the description about installation.
<a name="3.2"></a> <a name="3.2"></a>
......
...@@ -139,7 +139,7 @@ print(next(result)) ...@@ -139,7 +139,7 @@ print(next(result))
### 3.1 Installation ### 3.1 Installation
* Please refer to [Installation](../installation/install_paddleclas_en.md) to get the description about installation. * Please refer to [Installation](../installation.md) to get the description about installation.
<a name="3.2"></a> <a name="3.2"></a>
......
...@@ -136,7 +136,7 @@ print(next(result)) ...@@ -136,7 +136,7 @@ print(next(result))
### 3.1 Installation ### 3.1 Installation
Please refer to [Installation](../installation/install_paddleclas_en.md) to get the description about installation. Please refer to [Installation](../installation.md) to get the description about installation.
<a name="3.2"></a> <a name="3.2"></a>
......
...@@ -160,7 +160,7 @@ print(next(result)) ...@@ -160,7 +160,7 @@ print(next(result))
### 3.1 Installation ### 3.1 Installation
Please refer to [Installation](../installation/install_paddleclas_en.md) to get the description about installation. Please refer to [Installation](../installation.md) to get the description about installation.
<a name="3.2"></a> <a name="3.2"></a>
......
...@@ -136,7 +136,7 @@ print(next(result)) ...@@ -136,7 +136,7 @@ print(next(result))
### 3.1 Installation ### 3.1 Installation
Please refer to [Installation](../installation/install_paddleclas_en.md) to get the description about installation. Please refer to [Installation](../installation.md) to get the description about installation.
<a name="3.2"></a> <a name="3.2"></a>
......
...@@ -137,7 +137,7 @@ print(next(result)) ...@@ -137,7 +137,7 @@ print(next(result))
### 3.1 Installation ### 3.1 Installation
Please refer to [Installation](../installation/install_paddleclas_en.md) to get the description about installation. Please refer to [Installation](../installation.md) to get the description about installation.
<a name="3.2"></a> <a name="3.2"></a>
......
...@@ -133,7 +133,7 @@ print(next(result)) ...@@ -133,7 +133,7 @@ print(next(result))
### 3.1 Installation ### 3.1 Installation
Please refer to [Installation](../installation/install_paddleclas_en.md) to get the description about installation. Please refer to [Installation](../installation.md) to get the description about installation.
<a name="3.2"></a> <a name="3.2"></a>
......
...@@ -138,7 +138,7 @@ print(next(result)) ...@@ -138,7 +138,7 @@ print(next(result))
### 3.1 Installation ### 3.1 Installation
Please refer to [Installation](../installation/install_paddleclas_en.md) to get the description about installation. Please refer to [Installation](../installation.md) to get the description about installation.
<a name="3.2"></a> <a name="3.2"></a>
......
...@@ -136,7 +136,7 @@ print(next(result)) ...@@ -136,7 +136,7 @@ print(next(result))
### 3.1 Installation ### 3.1 Installation
Please refer to [Installation](../installation/install_paddleclas_en.md) to get the description about installation. Please refer to [Installation](../installation.md) to get the description about installation.
<a name="3.2"></a> <a name="3.2"></a>
......
...@@ -142,7 +142,7 @@ print(next(result)) ...@@ -142,7 +142,7 @@ print(next(result))
### 3.1 Installation ### 3.1 Installation
Please refer to [Installation](../installation/install_paddleclas_en.md) to get the description about installation. Please refer to [Installation](../installation.md) to get the description about installation.
<a name="3.2"></a> <a name="3.2"></a>
......
...@@ -805,7 +805,7 @@ Loss: ...@@ -805,7 +805,7 @@ Loss:
### 2.1 Environment Configuration ### 2.1 Environment Configuration
* Installation: Please refer to [Paddle Installation Tutorial](../installation/install_paddle_en.md) and [PaddleClas Installation Tutorial](../installation/install_paddleclas_en.md) to configure the running environment. * Installation: Please refer to [Installation Tutorial](../installation.md) to configure the running environment.
<a name="2.2"></a> <a name="2.2"></a>
......
...@@ -17,7 +17,7 @@ PaddlePaddle supports exporting inference model for deployment. Compared with tr ...@@ -17,7 +17,7 @@ PaddlePaddle supports exporting inference model for deployment. Compared with tr
## 1. Environmental preparation ## 1. Environmental preparation
First, refer to the [Installing PaddlePaddle](../installation/install_paddle_en.md) and the [Installing PaddleClas](../installation/install_paddleclas_en.md) to prepare environment. First, refer to the [Installing PaddleClas](../installation.md) to prepare environment.
<a name="2"></a> <a name="2"></a>
......
...@@ -6,7 +6,7 @@ The model saved during the training process is the checkpoints model, which save ...@@ -6,7 +6,7 @@ The model saved during the training process is the checkpoints model, which save
Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems. Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems.
Please refer to the document [install paddle](../installation/install_paddle_en.md) and [install paddleclas](../installation/install_paddleclas_en.md) to prepare the environment. Please refer to the document [install paddleclas](../installation.md) to prepare the environment.
--- ---
......
...@@ -170,7 +170,7 @@ The result of demo above: ...@@ -170,7 +170,7 @@ The result of demo above:
### 3.1 Installation ### 3.1 Installation
Please refer to [Installation](../installation/install_paddleclas_en.md) to get the description about installation. Please refer to [Installation](../installation.md) to get the description about installation.
<a name="3.2"></a> <a name="3.2"></a>
......
...@@ -220,7 +220,7 @@ The result of demo above: ...@@ -220,7 +220,7 @@ The result of demo above:
### 3.1 Installation ### 3.1 Installation
Please refer to [Installation](../installation/install_paddleclas_en.md) to get the description about installation. Please refer to [Installation](../installation.md) to get the description about installation.
<a name="3.2"></a> <a name="3.2"></a>
......
...@@ -86,7 +86,7 @@ After a model is trained, the evaluation results of the model on the validation ...@@ -86,7 +86,7 @@ After a model is trained, the evaluation results of the model on the validation
## 3. Application Methods ## 3. Application Methods
Please refer to [Installation](../installation/install_paddleclas_en.md) to setup environment at first, and prepare flower102 dataset by following the instruction mentioned in the [Quick Start](../quick_start/quick_start_classification_new_user_en.md). Please refer to [Installation](../installation.md) to setup environment at first, and prepare flower102 dataset by following the instruction mentioned in the [Quick Start](../quick_start/quick_start_classification_new_user_en.md).
So far, PaddleClas supports the following training/evaluation environments: So far, PaddleClas supports the following training/evaluation environments:
......
...@@ -16,7 +16,7 @@ The feature gallery is built in advance using the labeled image datasets. The co ...@@ -16,7 +16,7 @@ The feature gallery is built in advance using the labeled image datasets. The co
To experience the whole image recognition system, or learn how to build a feature gallery, please refer to [Quick Start of Image Recognition](../quick_start/quick_start_recognition_en.md), which explains the overall application process. The following parts expound on the training part of the above three steps. To experience the whole image recognition system, or learn how to build a feature gallery, please refer to [Quick Start of Image Recognition](../quick_start/quick_start_recognition_en.md), which explains the overall application process. The following parts expound on the training part of the above three steps.
Please first refer to the [Installation Guide](../installation/install_paddleclas_en.md) to configure the runtime environment. Please first refer to the [Installation Guide](../installation.md) to configure the runtime environment.
## Catalogue ## Catalogue
......
...@@ -48,7 +48,7 @@ Image classification is a pattern classification problem, which is the most basi ...@@ -48,7 +48,7 @@ Image classification is a pattern classification problem, which is the most basi
<a name="2"></a> <a name="2"></a>
## 2. Environmental installation and configuration ## 2. Environmental installation and configuration
For specific installation steps, please refer to [Paddle Installation Document](../installation/install_paddle_en.md), [PaddleClas Installation Document](../installation/install_paddleclas_en.md). For specific installation steps, please refer to [Installation Document](../installation.md).
<a name="3"></a> <a name="3"></a>
## 3. Data preparation and processing ## 3. Data preparation and processing
...@@ -191,4 +191,4 @@ The `-i` parameter can also be the directory of the image file to be tested (`da ...@@ -191,4 +191,4 @@ The `-i` parameter can also be the directory of the image file to be tested (`da
`[{'class_ids': [76, 51, 37, 33, 9], 'scores': [0.99998, 0.0, 0.0, 0.0, 0.0], 'file_name': 'dataset/flowers102/jpg/image_00001.jpg', 'label_names': ['passion flower', 'wild pansy', 'great masterwort', 'mexican aster', 'globe thistle']}, {'class_ids': [76, 51, 37, 33, 32], 'scores': [0.99999, 0.0, 0.0, 0.0, 0.0], 'file_name': 'dataset/flowers102/jpg/image_00002.jpg', 'label_names': ['passion flower', 'wild pansy', 'great masterwort', 'mexican aster', 'love in the mist']}, {'class_ids': [76, 12, 39, 73, 78], 'scores': [0.99998, 0.0, 0.0, 0.0, 0.0], 'file_name': 'dataset/flowers102/jpg/image_00003.jpg', 'label_names': ['passion flower', 'king protea', 'lenten rose', 'rose', 'toad lily']}, {'class_ids': [76, 37, 34, 12, 9], 'scores': [0.86282, 0.11177, 0.00717, 0.00599, 0.00397], 'file_name': 'dataset/flowers102/jpg/image_00004.jpg', 'label_names': ['passion flower', 'great masterwort', 'alpine sea holly', 'king protea', 'globe thistle']}, {'class_ids': [76, 37, 33, 51, 69], 'scores': [0.9999, 1e-05, 1e-05, 0.0, 0.0], 'file_name': 'dataset/flowers102/jpg/image_00005.jpg', 'label_names': ['passion flower', 'great masterwort', 'mexican aster', 'wild pansy', 'tree poppy']}, {'class_ids': [76, 37, 51, 33, 73], 'scores': [0.99999, 0.0, 0.0, 0.0, 0.0], 'file_name': 'dataset/flowers102/jpg/image_00006.jpg', 'label_names': ['passion flower', 'great masterwort', 'wild pansy', 'mexican aster', 'rose']}, {'class_ids': [76, 37, 12, 91, 30], 'scores': [0.98746, 0.00211, 0.00201, 0.00136, 0.0007], 'file_name': 'dataset/flowers102/jpg/image_00007.jpg', 'label_names': ['passion flower', 'great masterwort', 'king protea', 'bee balm', 'carnation']}, {'class_ids': [76, 37, 81, 77, 72], 'scores': [0.99976, 3e-05, 2e-05, 2e-05, 1e-05], 'file_name': 'dataset/flowers102/jpg/image_00008.jpg', 'label_names': ['passion flower', 'great masterwort', 'clematis', 'lotus', 'water lily']}, {'class_ids': [76, 37, 13, 12, 34], 'scores': [0.99646, 0.00144, 0.00092, 0.00035, 0.00027], 'file_name': 'dataset/flowers102/jpg/image_00009.jpg', 'label_names': ['passion flower', 'great masterwort', 'spear thistle', 'king protea', 'alpine sea holly']}, {'class_ids': [76, 37, 34, 33, 51], 'scores': [0.99999, 0.0, 0.0, 0.0, 0.0], 'file_name': 'dataset/flowers102/jpg/image_00010.jpg', 'label_names': ['passion flower', 'great masterwort', 'alpine sea holly', 'mexican aster', 'wild pansy']}]` `[{'class_ids': [76, 51, 37, 33, 9], 'scores': [0.99998, 0.0, 0.0, 0.0, 0.0], 'file_name': 'dataset/flowers102/jpg/image_00001.jpg', 'label_names': ['passion flower', 'wild pansy', 'great masterwort', 'mexican aster', 'globe thistle']}, {'class_ids': [76, 51, 37, 33, 32], 'scores': [0.99999, 0.0, 0.0, 0.0, 0.0], 'file_name': 'dataset/flowers102/jpg/image_00002.jpg', 'label_names': ['passion flower', 'wild pansy', 'great masterwort', 'mexican aster', 'love in the mist']}, {'class_ids': [76, 12, 39, 73, 78], 'scores': [0.99998, 0.0, 0.0, 0.0, 0.0], 'file_name': 'dataset/flowers102/jpg/image_00003.jpg', 'label_names': ['passion flower', 'king protea', 'lenten rose', 'rose', 'toad lily']}, {'class_ids': [76, 37, 34, 12, 9], 'scores': [0.86282, 0.11177, 0.00717, 0.00599, 0.00397], 'file_name': 'dataset/flowers102/jpg/image_00004.jpg', 'label_names': ['passion flower', 'great masterwort', 'alpine sea holly', 'king protea', 'globe thistle']}, {'class_ids': [76, 37, 33, 51, 69], 'scores': [0.9999, 1e-05, 1e-05, 0.0, 0.0], 'file_name': 'dataset/flowers102/jpg/image_00005.jpg', 'label_names': ['passion flower', 'great masterwort', 'mexican aster', 'wild pansy', 'tree poppy']}, {'class_ids': [76, 37, 51, 33, 73], 'scores': [0.99999, 0.0, 0.0, 0.0, 0.0], 'file_name': 'dataset/flowers102/jpg/image_00006.jpg', 'label_names': ['passion flower', 'great masterwort', 'wild pansy', 'mexican aster', 'rose']}, {'class_ids': [76, 37, 12, 91, 30], 'scores': [0.98746, 0.00211, 0.00201, 0.00136, 0.0007], 'file_name': 'dataset/flowers102/jpg/image_00007.jpg', 'label_names': ['passion flower', 'great masterwort', 'king protea', 'bee balm', 'carnation']}, {'class_ids': [76, 37, 81, 77, 72], 'scores': [0.99976, 3e-05, 2e-05, 2e-05, 1e-05], 'file_name': 'dataset/flowers102/jpg/image_00008.jpg', 'label_names': ['passion flower', 'great masterwort', 'clematis', 'lotus', 'water lily']}, {'class_ids': [76, 37, 13, 12, 34], 'scores': [0.99646, 0.00144, 0.00092, 0.00035, 0.00027], 'file_name': 'dataset/flowers102/jpg/image_00009.jpg', 'label_names': ['passion flower', 'great masterwort', 'spear thistle', 'king protea', 'alpine sea holly']}, {'class_ids': [76, 37, 34, 33, 51], 'scores': [0.99999, 0.0, 0.0, 0.0, 0.0], 'file_name': 'dataset/flowers102/jpg/image_00010.jpg', 'label_names': ['passion flower', 'great masterwort', 'alpine sea holly', 'mexican aster', 'wild pansy']}]`
Among them, the length of the list is the size of batch_size. Among them, the length of the list is the size of batch_size.
\ No newline at end of file
# Trial in 30mins(professional) # Trial in 30mins(professional)
Here is a quick start tutorial for professional users to use PaddleClas on the Linux operating system. The main content is based on the CIFAR-100 data set. You can quickly experience the training of different models, experience loading different pre-trained models, experience the SSLD knowledge distillation solution, and experience data augmentation. Please refer to [Installation Guide](../installation/install_paddleclas_en.md) to configure the operating environment and clone PaddleClas code. Here is a quick start tutorial for professional users to use PaddleClas on the Linux operating system. The main content is based on the CIFAR-100 data set. You can quickly experience the training of different models, experience loading different pre-trained models, experience the SSLD knowledge distillation solution, and experience data augmentation. Please refer to [Installation Guide](../installation.md) to configure the operating environment and clone PaddleClas code.
------ ------
...@@ -37,7 +37,7 @@ Here is a quick start tutorial for professional users to use PaddleClas on the L ...@@ -37,7 +37,7 @@ Here is a quick start tutorial for professional users to use PaddleClas on the L
cd path_to_PaddleClas cd path_to_PaddleClas
``` ```
<a name="1.1.1"></a> <a name="1.1.1"></a>
#### 1.1.1 Prepare CIFAR100 #### 1.1.1 Prepare CIFAR100
...@@ -54,11 +54,11 @@ cd ../ ...@@ -54,11 +54,11 @@ cd ../
## 2. Model training ## 2. Model training
<a name="2.1"></a> <a name="2.1"></a>
### 2.1 Single label training ### 2.1 Single label training
<a name="2.1.1"></a> <a name="2.1.1"></a>
#### 2.1.1 Training without loading the pre-trained model #### 2.1.1 Training without loading the pre-trained model
...@@ -93,7 +93,7 @@ python3 -m paddle.distributed.launch \ ...@@ -93,7 +93,7 @@ python3 -m paddle.distributed.launch \
* Since the initial learning rate and batch-size need to maintain a linear relationship, when training is switched from 4 GPUs to 1 GPU, the total batch-size is reduced to 1/4 of the original, and the learning rate also needs to be reduced to 1/4 of the original, so changed the default learning rate from 0.04 to 0.01. * Since the initial learning rate and batch-size need to maintain a linear relationship, when training is switched from 4 GPUs to 1 GPU, the total batch-size is reduced to 1/4 of the original, and the learning rate also needs to be reduced to 1/4 of the original, so changed the default learning rate from 0.04 to 0.01.
<a name="2.1.2"></a> <a name="2.1.2"></a>
#### 2.1.2 Transfer learning #### 2.1.2 Transfer learning
...@@ -148,7 +148,7 @@ The highest accuracy of the validation set is about 0.601, which is nearly 12% l ...@@ -148,7 +148,7 @@ The highest accuracy of the validation set is about 0.601, which is nearly 12% l
PaddleClas contains many data augmentation methods, such as Mixup, Cutout, RandomErasing, etc. For specific methods, please refer to [Data augmentation chapter](../algorithm_introduction/DataAugmentation_en.md) PaddleClas contains many data augmentation methods, such as Mixup, Cutout, RandomErasing, etc. For specific methods, please refer to [Data augmentation chapter](../algorithm_introduction/DataAugmentation_en.md)
<a name="3.1"></a> <a name="3.1"></a>
### 3.1 Data augmentation-Mixup ### 3.1 Data augmentation-Mixup
...@@ -245,11 +245,11 @@ In the end, the accuracy on the CIFAR100 validation set was 64.4%. Using the tea ...@@ -245,11 +245,11 @@ In the end, the accuracy on the CIFAR100 validation set was 64.4%. Using the tea
## 5. Model evaluation and inference ## 5. Model evaluation and inference
<a name="5.1"></a> <a name="5.1"></a>
### 5.1 Single-label classification model evaluation and inference ### 5.1 Single-label classification model evaluation and inference
<a name="5.1.1"></a> <a name="5.1.1"></a>
#### 5.1.1 Single-label classification model evaluation #### 5.1.1 Single-label classification model evaluation
...@@ -261,7 +261,7 @@ python3 tools/eval.py \ ...@@ -261,7 +261,7 @@ python3 tools/eval.py \
-o Global.pretrained_model="output_CIFAR/ResNet50_vd/best_model" -o Global.pretrained_model="output_CIFAR/ResNet50_vd/best_model"
``` ```
<a name="5.1.2"></a> <a name="5.1.2"></a>
#### 5.1.2 Single-label classification model prediction #### 5.1.2 Single-label classification model prediction
...@@ -274,7 +274,7 @@ python3 tools/infer.py \ ...@@ -274,7 +274,7 @@ python3 tools/infer.py \
-o Global.pretrained_model=output_CIFAR/ResNet50_vd/best_model -o Global.pretrained_model=output_CIFAR/ResNet50_vd/best_model
``` ```
<a name="5.1.3"></a> <a name="5.1.3"></a>
#### 5.1.3 Single-label classification uses inference model for model inference #### 5.1.3 Single-label classification uses inference model for model inference
......
# Quick Start of Multi-label Classification # Quick Start of Multi-label Classification
Experience the training, evaluation, and prediction of multi-label classification based on the [NUS-WIDE-SCENE](https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html) dataset, which is a subset of the NUS-WIDE dataset. Please first install PaddlePaddle and PaddleClas, see [Paddle Installation](../installation/install_paddle_en.md) and [PaddleClas installation](../installation/install_paddleclas_en.md) for more details. Experience the training, evaluation, and prediction of multi-label classification based on the [NUS-WIDE-SCENE](https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html) dataset, which is a subset of the NUS-WIDE dataset. Please first install PaddlePaddle and PaddleClas, see [Installation Doc](../installation.md) for more details.
## Catalogue ## Catalogue
......
...@@ -99,7 +99,7 @@ One can preview it according to the instructions in [Function Experience - Previ ...@@ -99,7 +99,7 @@ One can preview it according to the instructions in [Function Experience - Previ
### 2.1 Environment configuration ### 2.1 Environment configuration
* Installation: Please refer to the document [Environment Preparation](../installation/install_paddleclas_en.md) to configure the PaddleClas operating environment. * Installation: Please refer to the document [Environment Preparation](../installation.md) to configure the PaddleClas operating environment.
* Go to the `deploy` run directory. All the content and scripts in this section need to be run in the `deploy` directory, you can enter the `deploy` directory with the following scripts. * Go to the `deploy` run directory. All the content and scripts in this section need to be run in the `deploy` directory, you can enter the `deploy` directory with the following scripts.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册