提交 88600d33 编写于 作者: L lyuwenyu

add shuffle google mobile series

上级 5ac5b2c6
......@@ -324,4 +324,312 @@ def InceptionV4(**kwargs):
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['InceptionV4'])
model.set_state_dict(paddle.load(path))
return model
\ No newline at end of file
return model
def GoogLeNet(**kwargs):
'''GoogLeNet
'''
pretrained = kwargs.pop('pretrained', False)
model = _googlenet.GoogLeNet(**kwargs)
if pretrained:
assert 'GoogLeNet' in _checkpoints, 'Not provide `GoogLeNet` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['GoogLeNet'])
model.set_state_dict(paddle.load(path))
return model
def ShuffleNet(**kwargs):
'''ShuffleNet
'''
pretrained = kwargs.pop('pretrained', False)
model = _shufflenet_v2.ShuffleNet(**kwargs)
if pretrained:
assert 'ShuffleNet' in _checkpoints, 'Not provide `ShuffleNet` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ShuffleNet'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV1(**kwargs):
'''MobileNetV1
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v1.MobileNetV1(**kwargs)
if pretrained:
assert 'MobileNetV1' in _checkpoints, 'Not provide `MobileNetV1` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV1'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV1_x0_25(**kwargs):
'''MobileNetV1_x0_25
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v1.MobileNetV1_x0_25(**kwargs)
if pretrained:
assert 'MobileNetV1_x0_25' in _checkpoints, 'Not provide `MobileNetV1_x0_25` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV1_x0_25'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV1_x0_5(**kwargs):
'''MobileNetV1_x0_5
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v1.MobileNetV1_x0_5(**kwargs)
if pretrained:
assert 'MobileNetV1_x0_5' in _checkpoints, 'Not provide `MobileNetV1_x0_5` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV1_x0_5'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV1_x0_75(**kwargs):
'''MobileNetV1_x0_75
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v1.MobileNetV1_x0_75(**kwargs)
if pretrained:
assert 'MobileNetV1_x0_75' in _checkpoints, 'Not provide `MobileNetV1_x0_75` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV1_x0_75'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV2_x0_25(**kwargs):
'''MobileNetV2_x0_25
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x0_25(**kwargs)
if pretrained:
assert 'MobileNetV2_x0_25' in _checkpoints, 'Not provide `MobileNetV2_x0_25` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV2_x0_25'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV2_x0_5(**kwargs):
'''MobileNetV2_x0_5
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x0_5(**kwargs)
if pretrained:
assert 'MobileNetV2_x0_5' in _checkpoints, 'Not provide `MobileNetV2_x0_5` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV2_x0_5'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV2_x0_75(**kwargs):
'''MobileNetV2_x0_75
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x0_75(**kwargs)
if pretrained:
assert 'MobileNetV2_x0_75' in _checkpoints, 'Not provide `MobileNetV2_x0_75` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV2_x0_75'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV2_x1_5(**kwargs):
'''MobileNetV2_x1_5
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x1_5(**kwargs)
if pretrained:
assert 'MobileNetV2_x1_5' in _checkpoints, 'Not provide `MobileNetV2_x1_5` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV2_x1_5'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV2_x2_0(**kwargs):
'''MobileNetV2_x2_0
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v2.MobileNetV2_x2_0(**kwargs)
if pretrained:
assert 'MobileNetV2_x2_0' in _checkpoints, 'Not provide `MobileNetV2_x2_0` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV2_x2_0'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_large_x0_35(**kwargs):
'''MobileNetV3_large_x0_35
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x0_35(**kwargs)
if pretrained:
assert 'MobileNetV3_large_x0_35' in _checkpoints, 'Not provide `MobileNetV3_large_x0_35` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_large_x0_35'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_large_x0_5(**kwargs):
'''MobileNetV3_large_x0_5
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x0_5(**kwargs)
if pretrained:
assert 'MobileNetV3_large_x0_5' in _checkpoints, 'Not provide `MobileNetV3_large_x0_5` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_large_x0_5'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_large_x0_75(**kwargs):
'''MobileNetV3_large_x0_75
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x0_75(**kwargs)
if pretrained:
assert 'MobileNetV3_large_x0_75' in _checkpoints, 'Not provide `MobileNetV3_large_x0_75` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_large_x0_75'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_large_x1_0(**kwargs):
'''MobileNetV3_large_x1_0
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x1_0(**kwargs)
if pretrained:
assert 'MobileNetV3_large_x1_0' in _checkpoints, 'Not provide `MobileNetV3_large_x1_0` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_large_x1_0'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_large_x1_25(**kwargs):
'''MobileNetV3_large_x1_25
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_large_x1_25(**kwargs)
if pretrained:
assert 'MobileNetV3_large_x1_25' in _checkpoints, 'Not provide `MobileNetV3_large_x1_25` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_large_x1_25'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_small_x0_35(**kwargs):
'''MobileNetV3_small_x0_35
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x0_35(**kwargs)
if pretrained:
assert 'MobileNetV3_small_x0_35' in _checkpoints, 'Not provide `MobileNetV3_small_x0_35` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_small_x0_35'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_small_x0_5(**kwargs):
'''MobileNetV3_small_x0_5
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x0_5(**kwargs)
if pretrained:
assert 'MobileNetV3_small_x0_5' in _checkpoints, 'Not provide `MobileNetV3_small_x0_5` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_small_x0_5'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_small_x0_75(**kwargs):
'''MobileNetV3_small_x0_75
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x0_75(**kwargs)
if pretrained:
assert 'MobileNetV3_small_x0_75' in _checkpoints, 'Not provide `MobileNetV3_small_x0_75` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_small_x0_75'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_small_x1_0(**kwargs):
'''MobileNetV3_small_x1_0
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x1_0(**kwargs)
if pretrained:
assert 'MobileNetV3_small_x1_0' in _checkpoints, 'Not provide `MobileNetV3_small_x1_0` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_small_x1_0'])
model.set_state_dict(paddle.load(path))
return model
def MobileNetV3_small_x1_25(**kwargs):
'''MobileNetV3_small_x1_25
'''
pretrained = kwargs.pop('pretrained', False)
model = _mobilenet_v3.MobileNetV3_small_x1_25(**kwargs)
if pretrained:
assert 'MobileNetV3_small_x1_25' in _checkpoints, 'Not provide `MobileNetV3_small_x1_25` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['MobileNetV3_small_x1_25'])
model.set_state_dict(paddle.load(path))
return model
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册